芳香烃受体
FOXP3型
实验性自身免疫性脑脊髓炎
T细胞
转录因子
生物
细胞生物学
细胞分化
调节性T细胞
化学
免疫学
白细胞介素2受体
免疫系统
RAR相关孤儿受体γ
生物化学
基因
作者
Francisco J. Quintana,Alexandre S. Basso,Antonio Iglesias,Thomas Korn,Mauricio Farez,Estelle Bettelli,Mario Cáccamo,Mohamed Oukka,Howard L. Weiner
出处
期刊:Nature
[Nature Portfolio]
日期:2008-03-23
卷期号:453 (7191): 65-71
被引量:1728
摘要
Regulatory T cells (Treg) expressing the transcription factor Foxp3 control the autoreactive components of the immune system. The development of Treg cells is reciprocally related to that of pro-inflammatory T cells producing interleukin-17 (TH17). Although Treg cell dysfunction and/or TH17 cell dysregulation are thought to contribute to the development of autoimmune disorders, little is known about the physiological pathways that control the generation of these cell lineages. Here we report the identification of the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) as a regulator of Treg and TH17 cell differentiation in mice. AHR activation by its ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin induced functional Treg cells that suppressed experimental autoimmune encephalomyelitis. On the other hand, AHR activation by 6-formylindolo[3,2-b]carbazole interfered with Treg cell development, boosted TH17 cell differentiation and increased the severity of experimental autoimmune encephalomyelitis in mice. Thus, AHR regulates both Treg and TH17 cell differentiation in a ligand-specific fashion, constituting a unique target for therapeutic immunomodulation. The aryl hydrocarbon receptor (AHR) is a transcription factor best known for mediating the toxicity of aromatic hydrocarbons such as dioxin: its activation leads to the production of detoxification enzymes. AHR has been intensely studied in relation to toxicology and cancer research, but no mechanistic connection to the immune system was known. Now two groups report a role for AHR in maintaining the balance between two T-lymphocyte populations — the Treg and TH17 cells — that are part of the immune regulation system dealing with tolerance of self-antigens and pathogen clearance. Both groups also show that AHR affects the severity of experimental autoimmune encephalitis, a mouse model of multiple sclerosis. This work raises the possibility that stimulation of AHR by environmental factors could be involved in the development of autoimmune disease, and point to AHR as a possible drug target for immunomodulation. The aryl hydrocarbon receptor (AHR) is the cellular receptor for a number of environment contaminants. It is shown here to induce regulatory T cells when bound to the ligand TCCD and promote TH17 differentiation when bound to FICZ.
科研通智能强力驱动
Strongly Powered by AbleSci AI