A Traffic Prediction Enabled Double Rewarded Value Iteration Network for Route Planning

北京 计算机科学 钥匙(锁) 布线(电子设计自动化) 运输工程 线路规划 功能(生物学) 运筹学 计算机网络 工程类 中国 计算机安全 政治学 进化生物学 生物 法学
作者
Jinglin Li,Dawei Fu,Quan Yuan,Haohan Zhang,Kaihui Chen,Shu Yang,Fangchun Yang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 4170-4181 被引量:68
标识
DOI:10.1109/tvt.2019.2893173
摘要

Effective route planning is the key to improving transportation efficiency. By leveraging the in-depth knowledge of road topology and traffic trends, experienced drivers (e.g., taxi drivers) can usually find near-optimal routes. However, existing online route planning services can hardly acquire this domain knowledge, so they just provide the fastest/shortest route based on current traffic conditions. These seemingly optimal routes may attract numerous vehicles and then become extremely congested. To solve this problem and actually improve transportation efficiency, we propose a double rewarded value iteration network (VIN) to fully learn the experienced drivers' routing decisions, which are based on their implicitly estimated traffic trends. First, the global traffic status and routing actions are chronologically extracted from large-scale taxicab trajectories. Then, to model the knowledge of traffic trends, a long short-term memory network is trained. Being expert at learning long-term planning involved functions, the VIN is utilized to model the policy function from both current and predicted future traffic status to an experienced driver's routing action. Finally, the performance of our proposed model is evaluated on real map and taxicab trajectories in Beijing, China. The experimental results demonstrate that the proposed model can achieve human like performance in most cases, with high success rate and less commuting time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助白辉采纳,获得10
刚刚
脑洞疼应助愤怒的小鸽子采纳,获得10
1秒前
harden9159完成签到,获得积分10
1秒前
xianbei完成签到,获得积分10
1秒前
领导范儿应助唯伊采纳,获得10
2秒前
深情安青应助开朗的亦竹采纳,获得10
4秒前
zzxpp完成签到 ,获得积分10
4秒前
123a应助憨憨采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
bkagyin应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
Provence应助科研通管家采纳,获得10
4秒前
寻道图强应助科研通管家采纳,获得30
4秒前
852应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
ccm应助科研通管家采纳,获得10
5秒前
科研通AI6应助雪雪啊采纳,获得10
5秒前
怡然的怜烟应助雪雪啊采纳,获得30
5秒前
科研通AI6应助雪雪啊采纳,获得30
5秒前
哈哈哈哈发布了新的文献求助10
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
Hello应助喵喵采纳,获得10
8秒前
lin发布了新的文献求助10
8秒前
听枫发布了新的文献求助10
9秒前
11秒前
12秒前
章文荣完成签到,获得积分10
12秒前
paleo-地质完成签到,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5411519
求助须知:如何正确求助?哪些是违规求助? 4529087
关于积分的说明 14117607
捐赠科研通 4443688
什么是DOI,文献DOI怎么找? 2438365
邀请新用户注册赠送积分活动 1430538
关于科研通互助平台的介绍 1408214