The harmonic mean p -value for combining dependent tests

数学 价值(数学) 统计
作者
Daniel J. Wilson
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:116 (4): 1195-1200 被引量:329
标识
DOI:10.1073/pnas.1814092116
摘要

Analysis of "big data" frequently involves statistical comparison of millions of competing hypotheses to discover hidden processes underlying observed patterns of data, for example, in the search for genetic determinants of disease in genome-wide association studies (GWAS). Controlling the familywise error rate (FWER) is considered the strongest protection against false positives but makes it difficult to reach the multiple testing-corrected significance threshold. Here, I introduce the harmonic mean p-value (HMP), which controls the FWER while greatly improving statistical power by combining dependent tests using generalized central limit theorem. I show that the HMP effortlessly combines information to detect statistically significant signals among groups of individually nonsignificant hypotheses in examples of a human GWAS for neuroticism and a joint human-pathogen GWAS for hepatitis C viral load. The HMP simultaneously tests all ways to group hypotheses, allowing the smallest groups of hypotheses that retain significance to be sought. The power of the HMP to detect significant hypothesis groups is greater than the power of the Benjamini-Hochberg procedure to detect significant hypotheses, although the latter only controls the weaker false discovery rate (FDR). The HMP has broad implications for the analysis of large datasets, because it enhances the potential for scientific discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笇采余发布了新的文献求助100
1秒前
2秒前
Yihahahaevd发布了新的文献求助10
2秒前
2秒前
3秒前
zhangliangliang完成签到,获得积分10
3秒前
栗子完成签到,获得积分10
5秒前
5秒前
酷酷学发布了新的文献求助10
5秒前
6秒前
FLN发布了新的文献求助10
8秒前
三三发布了新的文献求助10
8秒前
无忧发布了新的文献求助10
8秒前
神勇秋白发布了新的文献求助10
10秒前
搜集达人应助Shun采纳,获得10
12秒前
Xxi完成签到,获得积分10
12秒前
13秒前
乐乐应助积极问晴采纳,获得10
14秒前
科研通AI5应助uo采纳,获得10
16秒前
16秒前
凉拌黄瓜完成签到 ,获得积分10
17秒前
大米完成签到,获得积分10
18秒前
伍盎发布了新的文献求助10
19秒前
一亿发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
自信玥发布了新的文献求助10
21秒前
凉拌黄瓜关注了科研通微信公众号
22秒前
神勇秋白完成签到,获得积分10
24秒前
25秒前
25秒前
陈十八应助feng采纳,获得10
26秒前
NexusExplorer应助木木采纳,获得30
27秒前
刘荣圣完成签到,获得积分10
27秒前
28秒前
homer完成签到,获得积分10
28秒前
29秒前
自信玥完成签到,获得积分10
30秒前
粉条发布了新的文献求助10
31秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845261
求助须知:如何正确求助?哪些是违规求助? 3387384
关于积分的说明 10549216
捐赠科研通 3108109
什么是DOI,文献DOI怎么找? 1712430
邀请新用户注册赠送积分活动 824404
科研通“疑难数据库(出版商)”最低求助积分说明 774767