Quantifying inactive lithium in lithium metal batteries

锂(药物) 电解质 材料科学 阳极 相间 化学工程 透射电子显微镜 金属 法拉第效率 化学 分析化学(期刊) 电极 纳米技术 冶金 有机化学 物理化学 医学 生物 遗传学 工程类 内分泌学
作者
Chengcheng Fang,Jinxing Li,Minghao Zhang,Yihui Zhang,Fan Yang,Jungwoo Z. Lee,Min‐Han Lee,Judith Alvarado,Marshall A. Schroeder,Yangyuchen Yang,Bingyu Lu,Nicholas Williams,Miguel Ceja,Li Yang,Mei Cai,Jing Gu,Kang Xu,Xuefeng Wang,Ying Shirley Meng
出处
期刊:Nature [Springer Nature]
卷期号:572 (7770): 511-515 被引量:868
标识
DOI:10.1038/s41586-019-1481-z
摘要

Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram)1, but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption2,3. The formation of inactive (‘dead’) lithium— which consists of both (electro)chemically formed Li+ compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li0 (refs 4,5)—causes capacity loss and safety hazards. Quantitatively distinguishing between Li+ in components of the solid electrolyte interphase and unreacted metallic Li0 has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy6, in situ environmental transmission electron microscopy7,8, X-ray microtomography9 and magnetic resonance imaging10 provide a morphological perspective with little chemical information. Nuclear magnetic resonance11, X-ray photoelectron spectroscopy12 and cryogenic transmission electron microscopy13,14 can distinguish between Li+ in the solid electrolyte interphase and metallic Li0, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li0 to the total amount of inactive lithium. We identify the unreacted metallic Li0, not the (electro)chemically formed Li+ in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li0 content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. We propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries. Titration gas chromatography is developed as an analytical method of distinguishing between lithium metal and lithium compounds within a cycled battery and assessing the amount of unreacted metallic lithium available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hecate发布了新的文献求助10
1秒前
1秒前
orixero应助wb采纳,获得10
1秒前
2秒前
Jasper应助非鱼采纳,获得10
2秒前
orixero应助夜航鸟采纳,获得10
2秒前
美少女战士应助n烨采纳,获得10
3秒前
3秒前
ding应助小飞龙采纳,获得10
4秒前
5秒前
马丁陌陌007完成签到,获得积分10
5秒前
5秒前
阳光衣发布了新的文献求助10
6秒前
8秒前
8秒前
祁雅容发布了新的文献求助30
9秒前
9秒前
10秒前
尊敬的老虎完成签到,获得积分10
10秒前
10秒前
我是老大应助钱塘小虾米采纳,获得10
12秒前
centlay应助虚心三问采纳,获得10
12秒前
13秒前
李学谦发布了新的文献求助10
14秒前
14秒前
15秒前
可可发布了新的文献求助10
15秒前
共享精神应助小玲仔采纳,获得10
15秒前
loeyyu完成签到,获得积分10
15秒前
科研通AI2S应助黄金拉塔恩采纳,获得10
17秒前
呜呜嘛嘿应助祁雅容采纳,获得30
17秒前
17秒前
实验老六发布了新的文献求助10
19秒前
宜醉宜游宜睡应助cmt采纳,获得10
19秒前
19秒前
传奇3应助爱吃辣椒的蓉蓉采纳,获得10
20秒前
Hao应助图兰采纳,获得10
20秒前
董懂懂关注了科研通微信公众号
20秒前
20秒前
彩色一手完成签到,获得积分20
20秒前
高分求助中
【本贴是提醒信息,请勿应助】请在求助之前详细阅读求助说明!!!! 20000
comprehensive molecular insect science 1000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Challenges, Strategies, and Resiliency in Disaster and Risk Management 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2481476
求助须知:如何正确求助?哪些是违规求助? 2144203
关于积分的说明 5468763
捐赠科研通 1866692
什么是DOI,文献DOI怎么找? 927740
版权声明 563039
科研通“疑难数据库(出版商)”最低求助积分说明 496382