子宫内膜癌
宫腔镜检查
医学
肌瘤
子宫内膜
子宫内膜息肉
癌症
妇科
产科
放射科
内科学
子宫
作者
Yu Takahashi,Kenbun Sone,Katsuhiko Noda,Kaname Yoshida,Yusuke Toyohara,Kosuke Kato,Futaba Inoue,Asako Kukita,Ayumi Taguchi,Haruka Nishida,Yuichiro Miyamoto,Michihiro Tanikawa,Tetsushi Tsuruga,Takayuki Iriyama,Kazunori Nagasaka,Yōko Matsumoto,Yasushi Hirota,Osamu Wada‐Hiraike,Katsutoshi Oda,Masanori Maruyama
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2021-03-31
卷期号:16 (3): e0248526-e0248526
被引量:45
标识
DOI:10.1371/journal.pone.0248526
摘要
Endometrial cancer is a ubiquitous gynecological disease with increasing global incidence. Therefore, despite the lack of an established screening technique to date, early diagnosis of endometrial cancer assumes critical importance. This paper presents an artificial-intelligence-based system to detect the regions affected by endometrial cancer automatically from hysteroscopic images. In this study, 177 patients (60 with normal endometrium, 21 with uterine myoma, 60 with endometrial polyp, 15 with atypical endometrial hyperplasia, and 21 with endometrial cancer) with a history of hysteroscopy were recruited. Machine-learning techniques based on three popular deep neural network models were employed, and a continuity-analysis method was developed to enhance the accuracy of cancer diagnosis. Finally, we investigated if the accuracy could be improved by combining all the trained models. The results reveal that the diagnosis accuracy was approximately 80% (78.91–80.93%) when using the standard method, and it increased to 89% (83.94–89.13%) and exceeded 90% (i.e., 90.29%) when employing the proposed continuity analysis and combining the three neural networks, respectively. The corresponding sensitivity and specificity equaled 91.66% and 89.36%, respectively. These findings demonstrate the proposed method to be sufficient to facilitate timely diagnosis of endometrial cancer in the near future.
科研通智能强力驱动
Strongly Powered by AbleSci AI