Automated system for diagnosing endometrial cancer by adopting deep-learning technology in hysteroscopy

子宫内膜癌 宫腔镜检查 医学 肌瘤 子宫内膜 子宫内膜息肉 癌症 妇科 产科 放射科 内科学 子宫
作者
Yu Takahashi,Kenbun Sone,Katsuhiko Noda,Kaname Yoshida,Yusuke Toyohara,Kosuke Kato,Futaba Inoue,Asako Kukita,Ayumi Taguchi,Haruka Nishida,Yuichiro Miyamoto,Michihiro Tanikawa,Tetsushi Tsuruga,Takayuki Iriyama,Kazunori Nagasaka,Yōko Matsumoto,Yasushi Hirota,Osamu Wada‐Hiraike,Katsutoshi Oda,Masanori Maruyama
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (3): e0248526-e0248526 被引量:45
标识
DOI:10.1371/journal.pone.0248526
摘要

Endometrial cancer is a ubiquitous gynecological disease with increasing global incidence. Therefore, despite the lack of an established screening technique to date, early diagnosis of endometrial cancer assumes critical importance. This paper presents an artificial-intelligence-based system to detect the regions affected by endometrial cancer automatically from hysteroscopic images. In this study, 177 patients (60 with normal endometrium, 21 with uterine myoma, 60 with endometrial polyp, 15 with atypical endometrial hyperplasia, and 21 with endometrial cancer) with a history of hysteroscopy were recruited. Machine-learning techniques based on three popular deep neural network models were employed, and a continuity-analysis method was developed to enhance the accuracy of cancer diagnosis. Finally, we investigated if the accuracy could be improved by combining all the trained models. The results reveal that the diagnosis accuracy was approximately 80% (78.91–80.93%) when using the standard method, and it increased to 89% (83.94–89.13%) and exceeded 90% (i.e., 90.29%) when employing the proposed continuity analysis and combining the three neural networks, respectively. The corresponding sensitivity and specificity equaled 91.66% and 89.36%, respectively. These findings demonstrate the proposed method to be sufficient to facilitate timely diagnosis of endometrial cancer in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SaSa发布了新的文献求助30
1秒前
待定发布了新的文献求助10
2秒前
wanci应助小元采纳,获得10
2秒前
wahoo完成签到,获得积分10
3秒前
shiwei关注了科研通微信公众号
4秒前
不倦应助llg采纳,获得10
4秒前
10秒前
勤恳冰淇淋完成签到 ,获得积分10
11秒前
Owen应助maclogos采纳,获得10
12秒前
哈哈哈哈哈完成签到 ,获得积分10
12秒前
忐忑的黑猫应助涂丁元采纳,获得10
12秒前
地三鲜完成签到,获得积分10
16秒前
Ning发布了新的文献求助10
16秒前
22秒前
dwalll发布了新的文献求助10
23秒前
dsdjsicj发布了新的文献求助10
23秒前
shiwei发布了新的文献求助10
25秒前
okko完成签到,获得积分10
25秒前
25秒前
27秒前
dingzj0828发布了新的文献求助10
27秒前
28秒前
okko发布了新的文献求助10
28秒前
SaSa完成签到,获得积分10
30秒前
lyn发布了新的文献求助20
31秒前
31秒前
太阳alright发布了新的文献求助10
32秒前
自强不息完成签到,获得积分10
33秒前
34秒前
jenningseastera应助wangjius采纳,获得10
35秒前
dingzj0828完成签到,获得积分10
35秒前
36秒前
王恒发布了新的文献求助10
37秒前
FODCOC完成签到,获得积分10
37秒前
38秒前
李爱国应助小高同学采纳,获得10
38秒前
lyn完成签到,获得积分10
39秒前
39秒前
太阳alright完成签到,获得积分10
40秒前
nidedaye发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778025
求助须知:如何正确求助?哪些是违规求助? 3323679
关于积分的说明 10215432
捐赠科研通 3038897
什么是DOI,文献DOI怎么找? 1667705
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339