Predicting the effect of street environment on residents' mood states in large urban areas using machine learning and street view images

心情 感觉 心理学 建筑环境 心理健康 应用心理学 地理 社会心理学 工程类 土木工程 心理治疗师
作者
Chongxian Chen,Haiwei Li,Weijing Luo,Jiehang Xie,Jing Yao,Longfeng Wu,Yu Xia
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:816: 151605-151605 被引量:56
标识
DOI:10.1016/j.scitotenv.2021.151605
摘要

Researchers have demonstrated that the built environment is associated with mental health outcomes. However, evidence concerning the effects of street environments on mood in fast-growing Asian cities is scarce. Traditional questionnaires and interview methods are labor intensive and time consuming and pose challenges for accurately and efficiently evaluating the impact of urban-scale street environments on mood.This study aims to use street view images and machine learning methods to model the impact of street environments on mood states in a large urban area in Guangzhou, China, and to assess the effect of different street view elements on mood.A total of 199,754 street view images of Guangzhou were captured from Tencent Street View, and street elements were extracted by pyramid scene parsing network. Data on six mood state indicators (motivated, happy, positive-social emotion, focused, relaxed, and depressed) were collected from 1590 participants via an online platform called Assessing the Effects of Street Views on Mood. A machine learning approach was proposed to predict the effects of street environment on mood in large urban areas in Guangzhou. A series of statistical analyses including stepwise regression, ridge regression, and lasso regression were conducted to assess the effects of street view elements on mood.Streets in urban fringe areas were more likely to produce motivated, happy, relaxed, and focused feelings in residents than those in city center areas. Conversely, areas in the city center, a high-density built environment, were more likely to produce depressive feelings. Street view elements have different effects on the six mood states. "Road" is a robust indicator positively correlated with the "motivated" indicator and negatively correlated with the "depressed" indicator. "Sky" is negatively associated with "positive-social emotion" and "depressed" but positively associated with "motivated". "Building" is a negative predictor for the "focused" and "happy" indicator but is positively related to the "depressed" indicator, while "vegetation" and "terrain" are the variables most robustly and positively correlated with all positive moods.Our findings can help urban designers identify crucial areas of the city for optimization, and they have practical implications for urban planners seeking to build urban environments that foster better mental health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Pt完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
海岢发布了新的文献求助10
4秒前
4秒前
hwy发布了新的文献求助10
4秒前
霸气的猎豹完成签到,获得积分10
6秒前
目分完成签到,获得积分10
6秒前
小爽子发布了新的文献求助10
6秒前
7秒前
我要向阳而生完成签到 ,获得积分10
7秒前
lfydhk发布了新的文献求助10
8秒前
磊磊猪完成签到,获得积分10
8秒前
8秒前
烟花应助琪凯定理采纳,获得10
9秒前
wishes完成签到 ,获得积分10
9秒前
9秒前
怿愀完成签到,获得积分10
9秒前
blue发布了新的文献求助10
10秒前
快快毕业发布了新的文献求助10
10秒前
在水一方应助superspace采纳,获得10
11秒前
llbeyond完成签到,获得积分0
12秒前
13秒前
路明非发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
勤能补拙发布了新的文献求助100
15秒前
qiao完成签到,获得积分10
15秒前
复杂黑夜应助Singularity采纳,获得10
17秒前
失眠傥完成签到,获得积分10
17秒前
李健的小迷弟应助Isabelxin_采纳,获得10
18秒前
研友_8QyXr8完成签到,获得积分10
19秒前
美丽若南发布了新的文献求助10
19秒前
科研通AI5应助鹬鸱采纳,获得10
19秒前
周多多发布了新的文献求助30
20秒前
和和发布了新的文献求助30
21秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821205
求助须知:如何正确求助?哪些是违规求助? 3363983
关于积分的说明 10426773
捐赠科研通 3082464
什么是DOI,文献DOI怎么找? 1695639
邀请新用户注册赠送积分活动 815196
科研通“疑难数据库(出版商)”最低求助积分说明 769046