木质素
材料科学
催化作用
胶粘剂
聚合物
复合材料
高分子科学
化学工程
有机化学
化学
工程类
图层(电子)
作者
Adrián Moreno,Mohammad Morsali,Mika H. Sipponen
标识
DOI:10.1021/acsami.1c17412
摘要
Biobased circular materials are alternatives to fossil-based engineering plastics, but simple and material-efficient synthetic routes are needed for industrial scalability. Here, a series of lignin-based vitrimers built on dynamic acetal covalent networks with a gel content exceeding 95% were successfully prepared in a one-pot, thermally activated, and catalyst-free "click" addition of softwood kraft lignin (SKL) to poly(ethylene glycol) divinyl ether (PDV). The variation of the content of lignin from 28 to 50 wt % was used to demonstrate that the mechanical properties of the vitrimers can be widely tuned in a facile way. The lowest lignin content (28 wt %) showed a tensile strength of 3.3 MPa with 35% elongation at break, while the corresponding values were 50.9 MPa and 1.0% for the vitrimer containing 50 wt % of lignin. These lignin-based vitrimers also exhibited excellent performance as recoverable adhesives for different substrates such as aluminum and wood, with a lap shear test strength of 6.0 and 2.6 MPa, respectively. In addition, recyclability of the vitrimer adhesives showed preservation of the adhesion performance exceeding 90%, indicating a promising potential for their use in sustainable circular materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI