Transcript level is a key factor affecting RNAi efficiency

RNA干扰 基因敲除 生物 基因 基因表达 黑腹果蝇 昆虫 遗传学 核糖核酸 细胞生物学 植物
作者
Jiasheng Chen,Yingchuan Peng,Hainan Zhang,Kangxu Wang,Yujie Tang,Jing Gao,Chunqing Zhao,Guan‐Heng Zhu,Subba Reddy Palli,Zhaojun Han
出处
期刊:Pesticide Biochemistry and Physiology [Elsevier BV]
卷期号:176: 104872-104872 被引量:18
标识
DOI:10.1016/j.pestbp.2021.104872
摘要

Efficiency is the basis for the application of RNA interference (RNAi) technology. Actually, RNAi efficiency varies greatly among insect species, tissues and genes. Previous efforts have revealed the mechanisms for variation among insect species and tissues. Here, we investigated the reason for variable efficiency among the target genes in the same insect. First, we tested the genes sampled randomly from Tribolium castaneum, Locusta migratoria and Drosophila S2 cells for both their expression levels and sensitivity to RNAi. The results indicated that the genes with higher expression levels were more sensitive to RNAi. Statistical analysis showed that the correlation coefficients between transcript levels and knockdown efficiencies were 0.8036 (n = 90), 0.7255 (n = 18) and 0.9505 (n = 13), respectively in T. castaneum, L. migratoria and Drosophila S2 cells. Subsequently, ten genes with varied expression level in different tissues (midgut and carcass without midgut) of T. castaneum were tested. The results indicated that the higher knockdown efficiency was always obtained in the tissue where the target gene expressed higher. In addition, three genes were tested in different developmental stages, larvae and pupae of T. castaneum. The results found that when the expression level increased after insect pupation, these genes became more sensitive to RNAi. Thus, all the proofs support unanimously that transcript level is a key factor affecting RNAi sensitivity. This finding allows for a better understanding of the RNAi efficiency variation and lead to effective or efficient use of RNAi technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虾条完成签到,获得积分10
1秒前
小二郎应助谦让夜香采纳,获得10
2秒前
番茄小姐完成签到,获得积分10
2秒前
2秒前
3秒前
SYLH应助幽默宛亦采纳,获得10
6秒前
巫马笑天完成签到 ,获得积分10
6秒前
小杨同学发布了新的文献求助10
8秒前
Mine发布了新的文献求助10
8秒前
高兴不尤完成签到,获得积分10
9秒前
所所应助易安采纳,获得10
9秒前
徐诣博完成签到,获得积分20
10秒前
二三语逢山外山2完成签到 ,获得积分10
11秒前
巫马谷南完成签到,获得积分10
12秒前
11驳回了酷波er应助
12秒前
搜集达人应助真实的半邪采纳,获得10
15秒前
一颗小洋葱完成签到 ,获得积分10
16秒前
徐诣博发布了新的文献求助10
17秒前
科研通AI2S应助fjhsg25采纳,获得10
17秒前
17秒前
18秒前
JamesPei应助你好采纳,获得30
19秒前
幽默宛亦完成签到,获得积分10
20秒前
20秒前
一帆风顺发布了新的文献求助50
22秒前
小太阳完成签到,获得积分10
22秒前
jingerous发布了新的文献求助10
24秒前
李鹏辉完成签到 ,获得积分10
25秒前
陌上无人扰完成签到,获得积分10
25秒前
桃紫完成签到,获得积分10
25秒前
旺仔完成签到 ,获得积分10
26秒前
紧张的寒梦完成签到 ,获得积分20
26秒前
29秒前
刘欢发布了新的文献求助10
30秒前
科研通AI5应助jingerous采纳,获得10
31秒前
31秒前
32秒前
33秒前
斯文败类应助Hongyan采纳,获得10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380808
关于积分的说明 10515927
捐赠科研通 3100415
什么是DOI,文献DOI怎么找? 1707492
邀请新用户注册赠送积分活动 821774
科研通“疑难数据库(出版商)”最低求助积分说明 772947