Interpretable and Lightweight 3-D Deep Learning Model for Automated ACL Diagnosis

计算机科学 人工智能 深度学习 计算机视觉 机器学习
作者
YoungSeok Jeon,Kensuke Yoshino,Shigeo Hagiwara,Atsuya Watanabe,Swee Tian Quek,Hiroshi Yoshioka,Mengling Feng
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 2388-2397 被引量:38
标识
DOI:10.1109/jbhi.2021.3081355
摘要

We propose an interpretable and lightweight 3D deep neural network model that diagnoses anterior cruciate ligament (ACL) tears from a knee MRI exam. Previous works focused primarily on achieving better diagnostic accuracy but paid less attention to practical aspects such as explainability and model size. They mainly relied on ImageNet pre-trained 2D deep neural network backbones, such as AlexNet or ResNet, which are computationally expensive. Some of them tried to interpret the models using post-inference visualization tools, such as CAM or Grad-CAM, which lack in generating accurate heatmaps. Our work addresses the two limitations by understanding the characteristics of ACL tear diagnosis. We argue that the semantic features required for classifying ACL tears are locally confined and highly homogeneous. We harness the unique characteristics of the task by incorporating: 1) attention modules and Gaussian positional encoding to reinforce the seeking of local features; 2) squeeze modules and fewer convolutional filters to reflect the homogeneity of the features. As a result, our model is interpretable: our attention modules can precisely highlight the ACL region without any location information given to them. Our model is extremely lightweight: consisting of only 43 K trainable parameters and 7.1 G of Floating-point operations per second (FLOPs), that is 225 times smaller and 91 times lesser than the previous state-of-the-art, respectively. Our model is accurate: our model outperforms the previous state-of-the-art with the average ROC-AUC of 0.983 and 0.980 on the Chiba and Stanford knee datasets, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等风来完成签到,获得积分10
1秒前
孙琪发布了新的文献求助10
1秒前
所所应助nana采纳,获得10
1秒前
香蕉觅云应助汎影采纳,获得10
1秒前
狗蛋发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
动漫大师发布了新的文献求助10
2秒前
chaofan完成签到 ,获得积分10
3秒前
LHW完成签到 ,获得积分10
3秒前
等风来发布了新的文献求助10
3秒前
宁小满完成签到,获得积分10
3秒前
LU发布了新的文献求助10
4秒前
大个应助酷酷银耳汤采纳,获得10
4秒前
zheng发布了新的文献求助10
4秒前
聪明的青雪完成签到,获得积分10
4秒前
赵老尕完成签到,获得积分10
5秒前
ihtw发布了新的文献求助10
5秒前
biubiu完成签到,获得积分10
5秒前
6秒前
桑尼发布了新的文献求助10
6秒前
SYLH应助我产物呢采纳,获得10
6秒前
天水碧完成签到,获得积分10
6秒前
彭于晏应助猕猴桃大王采纳,获得10
7秒前
Thy完成签到,获得积分10
8秒前
8秒前
小C发布了新的文献求助10
9秒前
chai发布了新的文献求助10
9秒前
至秦完成签到,获得积分20
9秒前
大个应助大马哈鱼采纳,获得10
9秒前
10秒前
闷油瓶完成签到,获得积分10
10秒前
宋佳顺完成签到,获得积分10
10秒前
刻苦鱼完成签到,获得积分20
11秒前
鸭鸭完成签到,获得积分20
11秒前
tomjeery完成签到,获得积分20
11秒前
子明完成签到 ,获得积分10
12秒前
HOHO完成签到,获得积分10
12秒前
科研通AI5应助2358489124采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868