已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Surrogate-Assisted Evolutionary Algorithm with Random Feature Selection for Large-Scale Expensive Problems

计算机科学 水准点(测量) 数学优化 最优化问题 维数(图论) 特征选择 人工智能 人口 选择(遗传算法) 替代模型 可分离空间 算法 进化算法 机器学习 比例(比率) 数学 地理 纯数学 数学分析 人口学 社会学 物理 量子力学 大地测量学
作者
Guoxia Fu,Chaoli Sun,Ying Tan,Guochen Zhang,Yaochu Jin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 125-139 被引量:20
标识
DOI:10.1007/978-3-030-58112-1_9
摘要

When optimizing large-scale problems an evolutionary algorithm typically requires a substantial number of fitness evaluations to discover a good approximation to the global optimum. This is an issue when the problem is also computationally expensive. Surrogate-assisted evolutionary algorithms have shown better performance on high-dimensional problems which are no larger than 200 dimensions. However, it is very difficult to train sufficiently accurate surrogate models for a large-scale optimization problem due to the lack of training data. In this paper, a random feature selection technique is utilized to select decision variables from the original large-scale optimization problem to form a number of sub-problems, whose dimension may differ to each other, at each generation. The population employed to optimize the original large-scale optimization problem is updated by sequentially optimizing each sub-problem assisted by a surrogate constructed for this sub-problem. A new candidate solution of the original problem is generated by replacing the decision variables of the best solution found so far with those of the sub-problem that has achieved the best approximated fitness among all sub-problems. This new solution is then evaluated using the original expensive problem and used to update the best solution. In order to evaluate the performance of the proposed method, we conduct the experiments on 15 CEC’2013 benchmark problems and compare to some state-of-the-art algorithms. The experimental results show that the proposed method is more effective than the state-of-the-art algorithms, especially on problems that are partially separable or non-separable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
小初应助科研通管家采纳,获得10
1秒前
YifanWang应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI5应助沉默数据线采纳,获得10
4秒前
qiao完成签到,获得积分10
5秒前
redflower完成签到,获得积分10
7秒前
yyy完成签到 ,获得积分10
11秒前
哈哈完成签到,获得积分10
14秒前
wayne555555发布了新的文献求助10
23秒前
冰魂应助河中医朵花采纳,获得10
31秒前
精神发布了新的文献求助10
32秒前
wayne555555完成签到,获得积分10
37秒前
38秒前
慕青应助无情的麦片采纳,获得10
39秒前
zp6666tql完成签到 ,获得积分10
40秒前
晨晨完成签到,获得积分20
41秒前
杨song完成签到 ,获得积分10
43秒前
44秒前
诚心初晴发布了新的文献求助10
45秒前
45秒前
yeah发布了新的文献求助20
45秒前
46秒前
陈昊发布了新的文献求助10
47秒前
岸芷汀兰完成签到,获得积分10
48秒前
50秒前
Syj2468发布了新的文献求助10
50秒前
丘比特应助包子采纳,获得10
54秒前
zhangjianan完成签到,获得积分10
55秒前
六六完成签到 ,获得积分10
56秒前
YMM完成签到,获得积分10
57秒前
魚子应助范范采纳,获得30
57秒前
jialinduan完成签到,获得积分10
58秒前
令和完成签到 ,获得积分10
58秒前
科研通AI5应助调皮的诗桃采纳,获得30
1分钟前
wangjun完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
The acute effects of performing drop jumps of different intensities on concentric squat strength 200
Erectile dysfunction From bench to bedside 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824836
求助须知:如何正确求助?哪些是违规求助? 3367137
关于积分的说明 10444489
捐赠科研通 3086408
什么是DOI,文献DOI怎么找? 1698019
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769840