Continuous estimation of upper limb joint angle from sEMG signals based on SCA-LSTM deep learning approach

计算机科学 人工智能 感知器 接头(建筑物) 模式识别(心理学) 卷积神经网络 运动学 深度学习 自编码 均方误差 语音识别 人工神经网络 计算机视觉 数学 统计 经典力学 物理 工程类 建筑工程
作者
Chunsheng Ma,Lin Chen,Oluwarotimi Williams Samuel,Lisheng Xu,Guanglin Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:61: 102024-102024 被引量:45
标识
DOI:10.1016/j.bspc.2020.102024
摘要

Robotic arm control has drawn a lot of attention along with the development of industrialization. The methods based on myoelectric pattern recognition have been proposed with multiple degrees of freedom for years. While these methods can support the actuation of several classes of discrete movements sequentially, they do not allow simultaneous control of multiple movements in a continuous manner like natural arms. In this study, we proposed a short connected autoencoder long short-term memory (SCA-LSTM) based simultaneous and proportional (SP) scheme that estimates continuous arm movements using kinematic information extracted from surface electromyogram (sEMG) recordings. The sEMG signals corresponding to seven classes of shoulder-elbow joint angle movements acquired from eleven participants were preprocessed using max root mean square envelope. Afterwards, the proposed SCA-LSTM model and two commonly applied models, namely, multilayer perceptrons (MLPs) and convolutional neural network (CNN), were trained and tested using the preprocessed data for continuous estimation of arm movements. Our experimental results showed that the proposed SCA-LSTM model could achieve a significantly higher estimation accuracy of approximately 95.7% that is consistently stable across the subjects in comparison to the CNN (86.8%) and MLP (83.4%) models. These results suggest that the proposed SCA-LSTM would be a promising model for continuous estimation of upper limb movements from sEMG signals for prosthetic control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chen发布了新的文献求助10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
雪酪芋泥球完成签到 ,获得积分10
刚刚
刚刚
刚刚
1秒前
负责之柔完成签到,获得积分10
1秒前
菠萝炒饭发布了新的文献求助80
1秒前
sunen应助sherry0514采纳,获得10
2秒前
2秒前
3秒前
漂亮的佳宏完成签到 ,获得积分10
3秒前
Daodao发布了新的文献求助30
4秒前
4秒前
科研通AI5应助MaYYuan采纳,获得10
5秒前
南风发布了新的文献求助10
5秒前
5秒前
范先生发布了新的文献求助20
6秒前
6秒前
FashionBoy应助DawudShan采纳,获得30
6秒前
8秒前
徐泽芃发布了新的文献求助10
9秒前
天天都在干饭完成签到,获得积分10
9秒前
佳沫完成签到,获得积分10
9秒前
Akim应助拾一采纳,获得10
9秒前
畅快的绮菱完成签到,获得积分20
10秒前
10秒前
可ke完成签到 ,获得积分10
10秒前
不安饼干发布了新的文献求助10
10秒前
TP应助我劝告了风采纳,获得10
10秒前
霸气的思柔完成签到,获得积分10
11秒前
11秒前
吉克发布了新的文献求助10
11秒前
李健的小迷弟应助Daodao采纳,获得10
11秒前
freerdom完成签到 ,获得积分10
12秒前
流体小白发布了新的文献求助10
12秒前
13秒前
Jasper应助离江采纳,获得10
13秒前
Mm完成签到,获得积分10
14秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813761
求助须知:如何正确求助?哪些是违规求助? 3358153
关于积分的说明 10392200
捐赠科研通 3075499
什么是DOI,文献DOI怎么找? 1689310
邀请新用户注册赠送积分活动 812665
科研通“疑难数据库(出版商)”最低求助积分说明 767350