动态规划
插件
能源管理
计算机科学
庞特里亚金最小原理
燃料效率
生产(经济)
模型预测控制
系列(地层学)
混合动力汽车
控制工程
数学优化
能量(信号处理)
工程类
汽车工程
最优控制
算法
控制(管理)
人工智能
数学
古生物学
程序设计语言
功率(物理)
经济
量子力学
宏观经济学
物理
统计
生物
作者
Roland Schmid,Johannes Buerger,Naim Bajçinca
标识
DOI:10.1515/auto-2020-0025
摘要
Abstract This paper presents an energy management strategy for parallel plug-in-hybrid electric vehicles which combines Dynamic Programming (DP) and Pontryagin’s Minimums Principle (PMP). In particular, this paper focusses on the practical challenges encountered in series-production vehicles and develops corresponding extensions: First, the paper considers the effects of uncertain prediction data received from a navigation unit. Secondly, we consider engine starting costs in the DP-PMP framework and thirdly, we allow to constrain the engine state (on/off) in certain parts of the driving cycle. These three components are integrated into a unified DP-PMP framework. Simulation studies demonstrate the practical benefit of the algorithm and show close to optimal performance in terms of fuel consumption. At the same time the algorithm is computationally cheap and allows real-time operation on series-production ECUs.
科研通智能强力驱动
Strongly Powered by AbleSci AI