Clinical application of artificial intelligence-assisted diagnosis using anteroposterior pelvic radiographs in children with developmental dysplasia of the hip

射线照相术 医学 接收机工作特性 半脱位 医学诊断 口腔正畸科 发育不良 放射科 病理 内科学 替代医学
作者
Sicheng Zhang,Jun Sun,Chuanbin Liu,Jihong Fang,Hongtao Xie,Bo Ning
出处
期刊:The bone & joint journal [British Editorial Society of Bone & Joint Surgery]
卷期号:102-B (11): 1574-1581 被引量:49
标识
DOI:10.1302/0301-620x.102b11.bjj-2020-0712.r2
摘要

Aims The diagnosis of developmental dysplasia of the hip (DDH) is challenging owing to extensive variation in paediatric pelvic anatomy. Artificial intelligence (AI) may represent an effective diagnostic tool for DDH. Here, we aimed to develop an anteroposterior pelvic radiograph deep learning system for diagnosing DDH in children and analyze the feasibility of its application. Methods In total, 10,219 anteroposterior pelvic radiographs were retrospectively collected from April 2014 to December 2018. Clinicians labelled each radiograph using a uniform standard method. Radiographs were grouped according to age and into ‘dislocation’ (dislocation and subluxation) and ‘non-dislocation’ (normal cases and those with dysplasia of the acetabulum) groups based on clinical diagnosis. The deep learning system was trained and optimized using 9,081 radiographs; 1,138 test radiographs were then used to compare the diagnoses made by deep learning system and clinicians. The accuracy of the deep learning system was determined using a receiver operating characteristic curve, and the consistency of acetabular index measurements was evaluated using Bland-Altman plots. Results In all, 1,138 patients (242 males; 896 females; mean age 1.5 years (SD 1.79; 0 to 10) were included in this study. The area under the receiver operating characteristic curve, sensitivity, and specificity of the deep learning system for diagnosing hip dislocation were 0.975, 276/289 (95.5%), and 1,978/1,987 (99.5%), respectively. Compared with clinical diagnoses, the Bland-Altman 95% limits of agreement for acetabular index, as determined by the deep learning system from the radiographs of non-dislocated and dislocated hips, were -3.27° - 2.94° and -7.36° - 5.36°, respectively (p < 0.001). Conclusion The deep learning system was highly consistent, more convenient, and more effective for diagnosing DDH compared with clinician-led diagnoses. Deep learning systems should be considered for analysis of anteroposterior pelvic radiographs when diagnosing DDH. The deep learning system will improve the current artificially complicated screening referral process. Cite this article: Bone Joint J 2020;102-B(11):1574–1581.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助雪白代珊采纳,获得10
1秒前
1秒前
2秒前
3秒前
4秒前
4秒前
6秒前
6秒前
8秒前
寄语明月发布了新的文献求助10
8秒前
9秒前
Owen应助追风少年采纳,获得10
9秒前
归尘应助loveuso采纳,获得30
10秒前
Ade发布了新的文献求助10
10秒前
10秒前
11秒前
搜集达人应助Super采纳,获得10
12秒前
13秒前
14秒前
朝阳区李知恩应助sxiao采纳,获得30
15秒前
karmenda发布了新的文献求助10
17秒前
雨洋发布了新的文献求助20
17秒前
18秒前
19秒前
orixero应助shirley采纳,获得10
19秒前
俊逸如风完成签到 ,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助150
21秒前
23秒前
24秒前
如沐春风发布了新的文献求助10
24秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Tourist应助科研通管家采纳,获得150
27秒前
Koalas应助科研通管家采纳,获得10
27秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
核桃应助科研通管家采纳,获得10
27秒前
浮游应助lq采纳,获得10
27秒前
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073256
求助须知:如何正确求助?哪些是违规求助? 4293380
关于积分的说明 13378282
捐赠科研通 4114827
什么是DOI,文献DOI怎么找? 2253172
邀请新用户注册赠送积分活动 1257983
关于科研通互助平台的介绍 1190836