乳腺癌
预处理器
人工智能
计算机科学
分割
阶段(地层学)
计算机辅助设计
癌症
特征提取
医学
乳腺摄影术
医学物理学
模式识别(心理学)
计算机辅助诊断
机器学习
内科学
工程类
古生物学
工程制图
生物
作者
Saliha Zahoor,Ikram Ullah Lali,Muhammad Attique Khan,Kashif Javed,Waqar Mehmood
标识
DOI:10.2174/1573405616666200406110547
摘要
Breast Cancer is a common dangerous disease for women. Around the world, many women have died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues, there are several techniques and methods. The image processing, machine learning, and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to save a women's life. To detect the breast masses, microcalcifications, and malignant cells,different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for breast cancer survival, it is essential to improve the methods or techniques to diagnose it at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are also challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI