Dynamic Pricing and Routing for Same-Day Delivery

收入 收益管理 灵活性(工程) 动态定价 马尔可夫决策过程 计算机科学 运筹学 布线(电子设计自动化) 经济 马尔可夫过程 微观经济学 财务 工程类 计算机网络 统计 数学 管理
作者
Marlin W. Ulmer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:54 (4): 1016-1033 被引量:106
标识
DOI:10.1287/trsc.2019.0958
摘要

An increasing number of e-commerce retailers offers same-day delivery. To deliver the ordered goods, providers dynamically dispatch a fleet of vehicles transporting the goods from the warehouse to the customers. In many cases, retailers offer different delivery deadline options, from four-hour delivery up to next-hour delivery. Due to the deadlines, vehicles often only deliver a few orders per trip. The overall number of served orders within the delivery horizon is small and the revenue low. As a result, many companies currently struggle to conduct same-day delivery cost-efficiently. In this paper, we show how dynamic pricing is able to substantially increase both revenue and the number of customers we are able to serve the same day. To this end, we present an anticipatory pricing and routing policy (APRP) method that incentivizes customers to select delivery deadline options efficiently for the fleet to fulfill. This maintains the fleet’s flexibility to serve more future orders. We model the respective pricing and routing problem as a Markov decision process (MDP). To apply APRP, the state-dependent opportunity costs per customer and option are required. To this end, we use a guided offline value function approximation (VFA) based on state space aggregation. The VFA approximates the opportunity cost for every state and delivery option with respect to the fleet’s flexibility. As an offline method, APRP is able to determine suitable prices instantly when a customer orders. In an extensive computational study, we compare APRP with a policy based on fixed prices and with conventional temporal and geographical pricing policies. APRP outperforms the benchmark policies significantly, leading to both a higher revenue and more customers served the same day.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrWang完成签到,获得积分10
1秒前
chaos发布了新的文献求助10
2秒前
桐桐应助zhangzhaoxin采纳,获得30
2秒前
orixero应助张悦宇采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
哈哈哈哈完成签到 ,获得积分10
7秒前
ll发布了新的文献求助10
7秒前
sxx发布了新的文献求助10
7秒前
8秒前
笨笨的铅笔完成签到 ,获得积分10
8秒前
秋刀鱼发布了新的文献求助10
8秒前
合欢发布了新的文献求助10
9秒前
yy完成签到,获得积分10
10秒前
10秒前
漂亮夏兰给漂亮夏兰的求助进行了留言
10秒前
权青曼发布了新的文献求助10
10秒前
10秒前
12秒前
13秒前
yy发布了新的文献求助10
14秒前
zxz关注了科研通微信公众号
14秒前
Alvin发布了新的文献求助30
14秒前
16秒前
健康发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
21秒前
他们叫我张国荣完成签到,获得积分10
21秒前
加油发布了新的文献求助10
21秒前
22秒前
小马甲应助yy采纳,获得10
23秒前
董小婷完成签到 ,获得积分10
23秒前
27秒前
无花果应助残剑月采纳,获得10
27秒前
27秒前
HuanG_sen完成签到 ,获得积分10
28秒前
NexusExplorer应助笨笨梦松采纳,获得10
28秒前
Jasper应助笨笨梦松采纳,获得10
28秒前
zxz发布了新的文献求助10
28秒前
田様应助sxx采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475748
求助须知:如何正确求助?哪些是违规求助? 4577367
关于积分的说明 14361817
捐赠科研通 4505326
什么是DOI,文献DOI怎么找? 2468542
邀请新用户注册赠送积分活动 1456230
关于科研通互助平台的介绍 1429896