Improved Whale Optimization Algorithm Based on Nonlinear Adaptive Weight and Golden Sine Operator

鲸鱼 算法 计算机科学 非线性系统 操作员(生物学) 正弦 数学 物理 生物 基因 转录因子 渔业 量子力学 抑制因子 几何学 化学 生物化学
作者
Jianhua Zhang,Jie-Sheng Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 77013-77048 被引量:75
标识
DOI:10.1109/access.2020.2989445
摘要

Whale optimization algorithm (WOA) is a swarm intelligence-based algorithm that simulates whale population predation in the sea. Aiming at the shortcomings of WOA such as low precision and slow convergence speed, an improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator (NGS-WOA) was proposed. NGS-WOA first introduced a non-linear adaptive weigh so that search agents can adaptively explore the search space, and balance the development and exploration stages. Secondly, the improved golden sine operator is incorporated into the WOA. Due to the special relationship between the sine function and the unit circle, traversing the sine function is equivalent to scanning the unit circle. The search agent performs an efficient search with a sine route so as to improve the convergence speed and global exploration capability of the algorithm. At the same time, the addition of the golden section coefficient allows search agents to exploit with a fixed shrink step. The search agent can develop to areas with excellent results, which improves the optimization accuracy and local exploitation ability of the algorithm. In the simulation experiments, the gold sine algorithm (GoldSA), whale optimization algorithm (WOA), particle swarm optimization (PSO) algorithm, firefly algorithm (FA), fireworks algorithm (FWA), sine cosine algorithm (SCA) and NGS-WOA were selected for comparison experiments. Then, the effectiveness of the proposed improved strategies is verified. Finally, the improved WOA is applied to high-dimensional optimization and engineering optimization problems. The experimental results show that the improved strategy can effectively improve the performance of the algorithm, so that NGS-WOA has the advantages of high global convergence and avoiding falling into local optimal values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
00完成签到,获得积分10
4秒前
风汐5423完成签到,获得积分10
6秒前
早早完成签到,获得积分10
6秒前
稳重夜绿发布了新的文献求助10
7秒前
Owen应助hjx采纳,获得30
7秒前
7秒前
正直觅云完成签到,获得积分10
10秒前
guohong完成签到,获得积分10
11秒前
悦悦发布了新的文献求助10
12秒前
科研通AI5应助tdtk采纳,获得10
17秒前
儒雅一凤完成签到 ,获得积分10
18秒前
19秒前
飘逸锦程完成签到 ,获得积分10
21秒前
Hello应助金熙美采纳,获得10
21秒前
23秒前
DDDD发布了新的文献求助30
23秒前
Kate发布了新的文献求助10
24秒前
瓦罐汤完成签到 ,获得积分10
25秒前
小巧安南完成签到,获得积分10
28秒前
28秒前
jyy发布了新的文献求助20
30秒前
31秒前
自信谷冬完成签到,获得积分10
33秒前
文静的紫萱完成签到 ,获得积分10
34秒前
莫道桑榆完成签到,获得积分10
34秒前
研友_VZG7GZ应助Kate采纳,获得10
36秒前
金熙美发布了新的文献求助10
37秒前
39秒前
waa完成签到,获得积分10
42秒前
赘婿应助纯真黄蜂采纳,获得10
42秒前
haofan17完成签到,获得积分10
43秒前
所所应助小巧安南采纳,获得10
43秒前
44秒前
心灵美绝施完成签到,获得积分10
44秒前
YY发布了新的文献求助10
45秒前
zoro应助金熙美采纳,获得10
47秒前
端庄的蜗牛完成签到,获得积分10
48秒前
49秒前
panbaobao完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779823
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222188
捐赠科研通 3040419
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798776
科研通“疑难数据库(出版商)”最低求助积分说明 758552