Group-Wise Learning for Weakly Supervised Semantic Segmentation

计算机科学 人工智能 分割 基本事实 图像分割 语义鸿沟 深度学习 语义学(计算机科学) 图形 帕斯卡(单位) 机器学习 模式识别(心理学) 自然语言处理 理论计算机科学 图像(数学) 图像检索 程序设计语言
作者
Tianfei Zhou,Liulei Li,Xueyi Li,Chun-Mei Feng,Jianwu Li,Ling Shao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 799-811 被引量:92
标识
DOI:10.1109/tip.2021.3132834
摘要

Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, which require pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. To achieve this, we propose, for the first time, a novel group-wise learning framework for WSSS. The framework explicitly encodes semantic dependencies in a group of images to discover rich semantic context for estimating more reliable pseudo ground-truths, which are subsequently employed to train more effective segmentation models. In particular, we solve the group-wise learning within a graph neural network (GNN), wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by graph edges. We then formulate semantic mining as an iterative reasoning process which propagates the common semantics shared by a group of images to enrich node representations. Moreover, in order to prevent the model from paying excessive attention to common semantics, we further propose a graph dropout layer to encourage the graph model to capture more accurate and complete object responses. With the above efforts, our model lays the foundation for more sophisticated and flexible group-wise semantic mining. We conduct comprehensive experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. In addition, our model shows promising performance in weakly supervised object localization (WSOL) on the CUB-200-2011 dataset, demonstrating strong generalizability. Our code is available at: https://github.com/Lixy1997/Group-WSSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小姚在忙发布了新的文献求助10
刚刚
zuoyueyue应助yhhhhh采纳,获得50
刚刚
HMQ完成签到,获得积分10
刚刚
忧郁的大喷菇完成签到 ,获得积分10
刚刚
hhh完成签到,获得积分10
1秒前
PIKACHU发布了新的文献求助10
1秒前
1秒前
1秒前
行走的sci完成签到,获得积分10
1秒前
luoshiwen完成签到 ,获得积分10
2秒前
科研小狗完成签到,获得积分10
2秒前
YY关闭了YY文献求助
2秒前
3秒前
3秒前
荔枝凉完成签到,获得积分10
3秒前
一般的发布了新的文献求助20
3秒前
Akim应助惠惠采纳,获得10
3秒前
天真初蝶发布了新的文献求助10
3秒前
3秒前
Visiony完成签到,获得积分10
3秒前
4秒前
Aprilapple完成签到,获得积分10
4秒前
4秒前
4秒前
weiminghao完成签到,获得积分10
4秒前
orixero应助纭声采纳,获得10
4秒前
风犬少年发布了新的文献求助10
4秒前
5秒前
984295567完成签到,获得积分10
5秒前
5秒前
moyeon完成签到,获得积分10
5秒前
18635986106应助xueshudagongzai采纳,获得10
5秒前
十一一十完成签到 ,获得积分10
5秒前
芋圆不圆完成签到,获得积分0
5秒前
双桅船发布了新的文献求助10
5秒前
5秒前
小马甲应助Moon采纳,获得10
5秒前
hhhh完成签到,获得积分10
6秒前
研友_Z1eDgZ发布了新的文献求助10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024