EKF-LOAM: An Adaptive Fusion of LiDAR SLAM With Wheel Odometry and Inertial Data for Confined Spaces With Few Geometric Features

里程计 扩展卡尔曼滤波器 计算机视觉 同时定位和映射 人工智能 传感器融合 计算机科学 惯性测量装置 机器人 卡尔曼滤波器 完整的 移动机器人
作者
Gilmar P. Cruz,Adriano M. C. Rezende,Victor R. F. Miranda,Rafael Fernandes,Héctor Azpúrua,Armando Alves Neto,Gustavo Pessin,Gustavo Freitas
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1458-1471 被引量:53
标识
DOI:10.1109/tase.2022.3169442
摘要

A precise localization system and a map that properly represents the environment are fundamental for several robotic applications. Traditional LiDAR SLAM algorithms are particularly susceptible to underestimating the distance covered by real robots in environments with few geometric features. Common industrial confined spaces, such as ducts and galleries, have long and homogeneous structures, which are difficult to map. In this paper, we propose a novel approach, the EKF-LOAM , which fuses wheel odometry and IMU (Inertial Measurement Unit) data into the LeGO-LOAM algorithm using an Extended Kalman Filter. For that, the EKF-LOAM uses a simple and lightweight adaptive covariance matrix based on the number of detected geometric features. Simulated and real-world experiments with the EspeleoRobô, a service robot designed to inspect confined places, show that the EKF-LOAM method reduces the underestimating problem, with improvements greater than 50% when compared to the original LeGO-LOAM algorithm. Note to Practitioners —This paper is motivated by the challenges of autonomous navigation for mobile ground robots within confined and unstructured environments. Here, we propose a data fusion framework that uses common sensors (such as LiDARs, wheel odometry, and inertial devices) to improve the simultaneous localization and mapping (SLAM) capabilities of a robot without GPS and compass. This approach does not need artificial landmarks nor ideal light and, in scenarios with few geometric features, increases the performance of LiDAR SLAM techniques based on edge and planar features. We also provide a robust controller for the autonomous navigation of the robot during the mapping of a tunnel. Experiments carried out in simulation and real-world confined places show the effectiveness of our approach. In future work, we shall incorporate other sensors, such as cameras, to improve the SLAM process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光森林完成签到 ,获得积分10
刚刚
刚刚
田様应助xxp采纳,获得10
2秒前
量子星尘发布了新的文献求助30
2秒前
ZLWF发布了新的文献求助10
3秒前
英姑应助程院采纳,获得10
5秒前
7秒前
VAE发布了新的文献求助200
7秒前
koi发布了新的文献求助10
11秒前
....完成签到,获得积分20
11秒前
观妙散人完成签到,获得积分10
13秒前
hyx7735完成签到,获得积分10
13秒前
砂砾完成签到,获得积分10
14秒前
MG完成签到 ,获得积分10
15秒前
hyx7735发布了新的文献求助10
16秒前
憨憨兔子完成签到,获得积分10
17秒前
Owen应助lucy采纳,获得10
18秒前
量子星尘发布了新的文献求助10
19秒前
慕青应助博修采纳,获得10
19秒前
VAE完成签到,获得积分10
21秒前
ZIS完成签到,获得积分10
21秒前
李健的小迷弟应助余潇潇采纳,获得10
21秒前
自然的剑封完成签到,获得积分10
24秒前
maz123456完成签到,获得积分10
24秒前
七塔蹦完成签到,获得积分10
24秒前
bobo完成签到 ,获得积分10
25秒前
daheeeee完成签到,获得积分10
25秒前
刘钊扬完成签到,获得积分10
26秒前
不配.应助勤奋的如松采纳,获得20
29秒前
盐冰完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
34秒前
123完成签到 ,获得积分10
34秒前
37秒前
demoestar完成签到 ,获得积分10
38秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
Akim应助科研通管家采纳,获得10
39秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212780
求助须知:如何正确求助?哪些是违规求助? 3747005
关于积分的说明 11789485
捐赠科研通 3414563
什么是DOI,文献DOI怎么找? 1873739
邀请新用户注册赠送积分活动 928108
科研通“疑难数据库(出版商)”最低求助积分说明 837442