亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EKF-LOAM: An Adaptive Fusion of LiDAR SLAM With Wheel Odometry and Inertial Data for Confined Spaces With Few Geometric Features

里程计 扩展卡尔曼滤波器 计算机视觉 同时定位和映射 人工智能 传感器融合 计算机科学 惯性测量装置 机器人 卡尔曼滤波器 完整的 移动机器人
作者
Gilmar P. Cruz,Adriano M. C. Rezende,Victor R. F. Miranda,Rafael Fernandes,Héctor Azpúrua,Armando Alves Neto,Gustavo Pessin,Gustavo Freitas
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 1458-1471 被引量:53
标识
DOI:10.1109/tase.2022.3169442
摘要

A precise localization system and a map that properly represents the environment are fundamental for several robotic applications. Traditional LiDAR SLAM algorithms are particularly susceptible to underestimating the distance covered by real robots in environments with few geometric features. Common industrial confined spaces, such as ducts and galleries, have long and homogeneous structures, which are difficult to map. In this paper, we propose a novel approach, the EKF-LOAM , which fuses wheel odometry and IMU (Inertial Measurement Unit) data into the LeGO-LOAM algorithm using an Extended Kalman Filter. For that, the EKF-LOAM uses a simple and lightweight adaptive covariance matrix based on the number of detected geometric features. Simulated and real-world experiments with the EspeleoRobô, a service robot designed to inspect confined places, show that the EKF-LOAM method reduces the underestimating problem, with improvements greater than 50% when compared to the original LeGO-LOAM algorithm. Note to Practitioners —This paper is motivated by the challenges of autonomous navigation for mobile ground robots within confined and unstructured environments. Here, we propose a data fusion framework that uses common sensors (such as LiDARs, wheel odometry, and inertial devices) to improve the simultaneous localization and mapping (SLAM) capabilities of a robot without GPS and compass. This approach does not need artificial landmarks nor ideal light and, in scenarios with few geometric features, increases the performance of LiDAR SLAM techniques based on edge and planar features. We also provide a robust controller for the autonomous navigation of the robot during the mapping of a tunnel. Experiments carried out in simulation and real-world confined places show the effectiveness of our approach. In future work, we shall incorporate other sensors, such as cameras, to improve the SLAM process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范振杰完成签到,获得积分20
38秒前
范振杰发布了新的文献求助10
41秒前
领导范儿应助范振杰采纳,获得10
52秒前
1分钟前
忧郁小鸽子完成签到,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
小马甲应助budingman采纳,获得10
3分钟前
小二郎应助budingman采纳,获得10
3分钟前
顾矜应助budingman采纳,获得10
3分钟前
共享精神应助budingman采纳,获得10
3分钟前
深情安青应助budingman采纳,获得10
3分钟前
CipherSage应助budingman采纳,获得10
3分钟前
3分钟前
柔弱烨霖发布了新的文献求助10
3分钟前
4分钟前
852应助budingman采纳,获得10
4分钟前
领导范儿应助budingman采纳,获得10
4分钟前
香蕉觅云应助budingman采纳,获得10
4分钟前
汉堡包应助budingman采纳,获得10
4分钟前
Owen应助budingman采纳,获得10
4分钟前
4分钟前
传奇3应助budingman采纳,获得10
4分钟前
Orange应助budingman采纳,获得10
4分钟前
Lucas应助budingman采纳,获得10
4分钟前
科研通AI5应助budingman采纳,获得10
4分钟前
江流有声发布了新的文献求助10
4分钟前
CodeCraft应助铉莉采纳,获得10
4分钟前
mashibeo完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3343971
关于积分的说明 10318265
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323