Unsupervised Decomposition and Correction Network for Low-Light Image Enhancement

人工智能 能见度 计算机科学 一致性(知识库) 计算机视觉 直方图 颜色恒定性 分解 噪音(视频) 无监督学习 图像(数学) 颜色校正 模式识别(心理学) 深度学习 光学 物理 生物 生态学
作者
Qiuping Jiang,Yudong Mao,Runmin Cong,Wenqi Ren,Chao Huang,Feng Shao
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 19440-19455 被引量:68
标识
DOI:10.1109/tits.2022.3165176
摘要

Vision-based intelligent driving assistance systems and transportation systems can be improved by enhancing the visibility of the scenes captured in extremely challenging conditions. In particular, many low-image image enhancement (LIE) algorithms have been proposed to facilitate such applications in low-light conditions. While deep learning-based methods have achieved substantial success in this field, most of them require paired training data, which is difficult to be collected. This paper advocates a novel Unsupervised Decomposition and Correction Network (UDCN) for LIE without depending on paired data for training. Inspired by the Retinex model, our method first decomposes images into illumination and reflectance components with an image decomposition network (IDN). Then, the decomposed illumination is processed by an illumination correction network (ICN) and fused with the reflectance to generate a primary enhanced result. In contrast with fully supervised learning approaches, UDCN is an unsupervised one which is trained only with low-light images and corresponding histogram equalized (HE) counterparts (can be derived from the low-light image itself) as input. Both the decomposition and correction networks are optimized under the guidance of hybrid no-reference quality-aware losses and inter-consistency constraints between the low-light image and its HE counterpart. In addition, we also utilize an unsupervised noise removal network (NRN) to remove the noise previously hidden in the darkness for further improving the primary result. Qualitative and quantitative comparison results are reported to demonstrate the efficacy of UDCN and its superiority over several representative alternatives in the literature. The results and code will be made public available at https://github.com/myd945/UDCN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泽硕完成签到,获得积分10
1秒前
吐丝麵包完成签到,获得积分10
2秒前
酷酷邴完成签到,获得积分10
2秒前
儒雅的千秋完成签到,获得积分10
3秒前
小张想发刊完成签到,获得积分10
3秒前
浅辰完成签到 ,获得积分10
4秒前
淡定的月半完成签到,获得积分10
4秒前
6秒前
活力的妙芙完成签到,获得积分10
6秒前
开朗的汉堡完成签到,获得积分10
7秒前
指哪打哪完成签到,获得积分10
9秒前
薄荷味完成签到 ,获得积分0
9秒前
5433完成签到 ,获得积分10
9秒前
孙玮应助流川枫采纳,获得10
10秒前
wanglu完成签到,获得积分10
11秒前
01259完成签到 ,获得积分10
13秒前
缓慢白曼完成签到 ,获得积分10
14秒前
JPH1990完成签到,获得积分10
14秒前
尊敬的驳完成签到,获得积分10
15秒前
Tysonqu完成签到,获得积分10
17秒前
小zz完成签到 ,获得积分10
17秒前
apollo3232完成签到,获得积分10
22秒前
忧心的若云完成签到,获得积分10
23秒前
MonsterZhang完成签到,获得积分10
23秒前
Kalimba完成签到,获得积分10
24秒前
流川枫给流川枫的求助进行了留言
25秒前
中华牌老阿姨完成签到,获得积分10
26秒前
27秒前
小牛完成签到 ,获得积分10
29秒前
30秒前
31秒前
温暖涫完成签到 ,获得积分10
31秒前
幸福的千琴完成签到,获得积分10
32秒前
苹果蜗牛完成签到 ,获得积分10
33秒前
zm发布了新的文献求助10
33秒前
831143完成签到 ,获得积分0
33秒前
青年才俊完成签到 ,获得积分10
33秒前
007完成签到 ,获得积分10
34秒前
RATHER完成签到,获得积分10
35秒前
王治豪完成签到,获得积分10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808162
求助须知:如何正确求助?哪些是违规求助? 3352799
关于积分的说明 10360478
捐赠科研通 3068806
什么是DOI,文献DOI怎么找? 1685259
邀请新用户注册赠送积分活动 810410
科研通“疑难数据库(出版商)”最低求助积分说明 766108