Texture-based CT radiomics distinguishes radiation and immunotherapy induced pneumonitis in stage III NSCLC.

医学 杜瓦卢马布 肺炎 放射科 放射治疗 阶段(地层学) 无线电技术 免疫疗法 内科学 癌症 彭布罗利珠单抗 古生物学 生物
作者
Lukas Delasos,Vidya Sankar Viswanathan,Mohammadhadi Khorrami,Khalid Jazieh,Nathan A. Pennell,Anant Madabhushi,Pradnya D. Patil
出处
期刊:Journal of Clinical Oncology [Lippincott Williams & Wilkins]
卷期号:40 (16_suppl): 8555-8555
标识
DOI:10.1200/jco.2022.40.16_suppl.8555
摘要

8555 Background: Recent changes to the standard of care for unresectable stage III NSCLC include chemoradiation followed by consolidative immunotherapy (IO). Pneumonitis is a well-known complication of radiotherapy (RT) and has been increasingly reported in association with IO. Although rare, pneumonitis can cause severe morbidity and possibly death in extreme cases. Differentiating RT and IO-induced pneumonitis (RTP vs IOP) is crucial for acute management and future considerations of individualized treatment. However, the clinical and radiological features of RTP and IOP may be similar and often indistinguishable on computed tomography (CT). Texture-based CT radiomics has previously been used to distinguish benign and malignant nodules on lung CT. In this study, we explore if radiomic features extracted from lung CT can distinguish between RTP and IOP. Methods: From 236 patients with stage III NSCLC who underwent chemoradiation followed by consolidative durvalumab, we identified 110 cases of treatment-related pneumonitis. IOP cases were identified through a retrospective review of electronic medical records and independently verified by a thoracic oncologist using features such as bilateral lung involvement, inflammatory changes outside the field of RT, temporal relationship to IO, and response to treatment. Inflammatory lesions were manually annotated using Slicer 3D. After excluding cases without discernible cause and non-identifiable lung lesions (n = 61), we included 49 cases in the study (RTP n = 20; IOP n = 29). A total of 555 features from Gabor, Laws, Laplace, and Haralick feature families were extracted on a pixel level from post-treatment CT images. A support vector machine (SVM) classifier was trained with the most discriminating features identified by Wilcoxon rank-sum test feature selection method. The classifier performance for distinguishing RTP vs. IOP was assessed by averaging the area under the receiver operating characteristic curve (AUC) values computed over 100 iterations of threefold cross-validation. Results: We identified the top 5 radiomic texture features distinguishing RTP from IOP including Haralick entropy, Haralick info, Laws median, and high- and low-frequency Gabor. Using 3-fold cross-validation, the SVM classifier model built on the radiomic features achieved an AUC of 0.83 (95% confidence interval, 0.78 - 0.86). Conclusions: Pneumonitis is a severe complication of both RT and IO that must be taken into consideration when evaluating future risks of IO-based therapies. The distinction between RTP and IOP remains challenging based on CT findings alone. Radiomic texture features analysis of post-treatment CT images can potentially differentiate RTP from IOP in stage III NSCLC patients who received RT followed by consolidative durvalumab. Additional multi-site independent validation of these quantitative image-based biomarkers is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助无奈的萍采纳,获得10
23秒前
蔡勇强完成签到 ,获得积分10
25秒前
SDNUDRUG完成签到,获得积分10
33秒前
41秒前
kmzzy完成签到,获得积分10
42秒前
无奈的萍发布了新的文献求助10
44秒前
HRZ完成签到 ,获得积分10
48秒前
共享精神应助卡卡啊采纳,获得10
50秒前
氟锑酸完成签到 ,获得积分10
52秒前
58秒前
卡卡啊发布了新的文献求助10
1分钟前
Rui完成签到 ,获得积分10
1分钟前
Oracle应助科研通管家采纳,获得100
1分钟前
Oracle应助科研通管家采纳,获得100
1分钟前
JamesPei应助SDNUDRUG采纳,获得10
1分钟前
Oracle应助科研通管家采纳,获得100
1分钟前
isedu完成签到,获得积分10
1分钟前
1分钟前
卡卡啊完成签到,获得积分20
1分钟前
nater4ver完成签到,获得积分10
1分钟前
Zhao完成签到 ,获得积分10
1分钟前
loren313完成签到,获得积分0
1分钟前
积极的中蓝完成签到 ,获得积分10
1分钟前
欣慰冬亦完成签到 ,获得积分10
1分钟前
科研通AI5应助无奈的萍采纳,获得10
1分钟前
微笑的井完成签到 ,获得积分10
2分钟前
勤劳的颤完成签到 ,获得积分10
2分钟前
2分钟前
紫陌完成签到,获得积分10
2分钟前
科研通AI5应助Dash采纳,获得10
2分钟前
无奈的萍发布了新的文献求助10
2分钟前
Cheney完成签到 ,获得积分10
2分钟前
yellowonion完成签到 ,获得积分10
2分钟前
跨越山海的热爱完成签到 ,获得积分10
2分钟前
zhongbo完成签到,获得积分10
2分钟前
xxxxxxxx完成签到 ,获得积分10
2分钟前
科研通AI5应助有丝分裂吉采纳,获得10
3分钟前
离线完成签到 ,获得积分10
3分钟前
又又完成签到,获得积分10
3分钟前
朴实的绿兰完成签到 ,获得积分10
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782712
求助须知:如何正确求助?哪些是违规求助? 3328095
关于积分的说明 10234458
捐赠科研通 3043084
什么是DOI,文献DOI怎么找? 1670442
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994