Automated detection of boundary line in paddy field using MobileV2-UNet and RANSAC

兰萨克 稳健性(进化) 人工智能 计算机视觉 边界(拓扑) 分割 图像分割 计算机科学 残余物 目标检测 噪音(视频) 数学 算法 图像(数学) 数学分析 生物化学 化学 基因
作者
Yong He,Xiya Zhang,Zeqing Zhang,Hui Fang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106697-106697 被引量:28
标识
DOI:10.1016/j.compag.2022.106697
摘要

The detection of boundary lines in farmlands is critical for precision agriculture and automatic navigation. This study proposed a novel method for automatic detection of boundary lines in paddy fields based on images acquired from a vision system. These images were collected from different environmental conditions with wheel marks, shadows, weeds, and uneven illumination in paddy fields. To alleviate the effect of this environmental noise on the detection of boundary lines, the proposed method was designed with the required robustness, which included two sequentially linked phases: farmland area segmentation and boundary line detection. For the segmentation of the farmland area, this study proposed an effective deep learning model, called MobileV2-UNet, which used modified inverted residual blocks and the dilated convolution to achieve the accurate segmentation of the farmland area and nonfarmland area. For the detection of farmland boundary lines, a multiboundary detection method based on the frame correlation and random sample consensus (RANSAC) algorithm was applied to detect the side boundary and end boundary, which could provide critical information for agricultural machinery steering. Results showed that the mean intersection over union (mIoU) for area segmentation reached 0.908, and the average angular and vertical errors for boundary line detection were 0.865° and 0.021, respectively. Moreover, the processing speed reached 8 frames per second, which could meet the real-time work demands of agricultural machinery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助weiweiwei采纳,获得10
刚刚
刘小雨发布了新的文献求助10
刚刚
刚刚
完美世界应助yydsyk采纳,获得10
1秒前
乘风文月完成签到,获得积分10
1秒前
3秒前
4秒前
5秒前
5秒前
Eric发布了新的文献求助10
5秒前
Ava应助一朵会长树的花采纳,获得10
6秒前
地表飞猪应助笨笨盼易采纳,获得10
6秒前
洁净的士晋完成签到,获得积分10
6秒前
善学以致用应助锋feng采纳,获得30
7秒前
完美世界应助Liquor采纳,获得10
7秒前
平常的羊完成签到 ,获得积分10
7秒前
尹尹尹发布了新的文献求助10
7秒前
Ava应助皮卡猪采纳,获得30
8秒前
8秒前
嘻嘻完成签到,获得积分10
8秒前
dwz完成签到,获得积分20
8秒前
无名发布了新的文献求助10
9秒前
废柴发布了新的文献求助10
9秒前
彭于晏应助终梦采纳,获得10
9秒前
香蕉觅云应助伏城采纳,获得10
9秒前
swy发布了新的文献求助10
9秒前
9秒前
难过板栗应助科研通管家采纳,获得30
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
里尔吉恩完成签到,获得积分10
10秒前
1292360125完成签到,获得积分10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
知来者之可追完成签到,获得积分10
10秒前
CipherSage应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260