Fault monitoring in passive optical network through the integration of machine learning and fiber sensors

光时域反射计 计算机科学 无源光网络 传输(电信) 光纤分路器 光纤 宽带 断层(地质) 光纤传感器 光纤布拉格光栅 实时计算 电子工程 波分复用 电信 光学 工程类 地质学 地震学 物理 波长
作者
Auwalu Usman,Nadiatulhuda Zulkifli,Mohd Rashidi Salim,K. Khairi
出处
期刊:International Journal of Communication Systems [Wiley]
卷期号:35 (9) 被引量:11
标识
DOI:10.1002/dac.5134
摘要

Summary As the deployment of fiber‐based broadband networks continues to accelerate, the number of network facilities too is increasing exponentially. The network of optical fiber cables keeps growing as the number of passive optical network (PON) customers increases, eventually leading to unforeseen faults. Several solutions are offered for monitoring the optical link in PON with the optical time‐domain reflectometer (OTDR) as the most common for point‐to‐point optical link characterization. However, the OTDR approach has been found to be inadequate for point to multipoint network fault characterizations due to numerous back‐reflected signals converging at the power splitter that cannot be identified simultaneously by the OTDR detector. Several machine learning (ML) methods have recently been introduced for successful monitoring of optical communication links, but much of the ML technique depends on data from network transceivers to train ML algorithms to identify and detect faults. However, the use of data information for monitoring purposes can have an impact on the consistency of the services offered. In this article, we consider the deployment of the fiber Bragg grating sensor to acquire the monitoring data samples used to train the ML technique for effective link characterization. The proposed solution has the advantage of having a separate monitoring source that is independent of the data transmission signal and guarantees transparent transmission of information. The proposed ML‐based technique shows up to 99% precision for the identification of fiber defect in the PON optical distribution network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nihui完成签到,获得积分10
刚刚
1秒前
刘刘完成签到 ,获得积分10
1秒前
啊啊啊啊轩完成签到,获得积分10
1秒前
睡不醒的喵完成签到,获得积分10
1秒前
无患子完成签到,获得积分10
1秒前
LIGHT完成签到,获得积分10
2秒前
2秒前
鹿静白完成签到,获得积分20
2秒前
抗氧剂完成签到,获得积分10
3秒前
3秒前
阿姨洗铁路完成签到 ,获得积分10
3秒前
银海里的玫瑰_完成签到 ,获得积分10
3秒前
菜就多练完成签到,获得积分10
3秒前
共享精神应助科研达人采纳,获得10
3秒前
痴情的寒云完成签到 ,获得积分10
4秒前
雪白的南晴完成签到,获得积分10
4秒前
4秒前
霞霞完成签到,获得积分10
4秒前
在我梦里绕完成签到,获得积分10
5秒前
会游泳的鱼完成签到,获得积分10
5秒前
高挑的抽屉完成签到,获得积分10
6秒前
Jackcaosky完成签到 ,获得积分10
6秒前
6秒前
YangSY完成签到,获得积分10
6秒前
Shiki完成签到 ,获得积分10
7秒前
牙签撬地球完成签到,获得积分0
7秒前
HH发布了新的文献求助10
8秒前
HaoTu发布了新的文献求助10
8秒前
9秒前
Hang完成签到,获得积分10
9秒前
GD88完成签到,获得积分10
10秒前
lily完成签到,获得积分10
10秒前
勤劳的音响完成签到,获得积分10
10秒前
杭康完成签到,获得积分10
11秒前
不可思宇完成签到,获得积分10
11秒前
xxx完成签到,获得积分10
11秒前
思之若琴完成签到,获得积分10
12秒前
heyujie发布了新的文献求助10
12秒前
梧桐完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784869
求助须知:如何正确求助?哪些是违规求助? 3330170
关于积分的说明 10244733
捐赠科研通 3045558
什么是DOI,文献DOI怎么找? 1671716
邀请新用户注册赠送积分活动 800631
科研通“疑难数据库(出版商)”最低求助积分说明 759577