Underwater LiDAR Image Enhancement Using a GAN Based Machine Learning Technique

激光雷达 水下 计算机科学 人工智能 计算机视觉 遥感 材料科学 地质学 海洋学
作者
Dennis Estrada,Fraser Dalgleish,Casey J. Den Ouden,Brian Ramos,Yanjun Li,Bing Ouyang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:22 (5): 4438-4451 被引量:22
标识
DOI:10.1109/jsen.2022.3146133
摘要

Robust underwater imaging sensors are essential in applications such as identifying and classifying marine animals in turbid waters, typically found around coastal monitoring sites. The Unobtrusive Multi-static Serial LiDAR Imager (UMSLI) has been developed to capture images taken in degraded underwater environments and provides superior range and image contrast over conventional optical cameras. In contrast to traditional underwater LiDAR systems that employ blue-green lasers, UMLSI will not harm the vision of marine animals, which is an important aspect in such settings. As with any other underwater LiDAR sensors, improving the quality of images taken in highly turbid water is essential to the UMSLI system. This paper proposes a novel machine learning image enhancement technique based on a Generative Adversarial Network (GAN) framework. One main contribution of the method is the incorporation of a correntropy-based perceptual loss. This technique has shown to be effective in enhancing ground-based images and has been adapted for LiDAR image enhancement. Given the limitation of existing underwater LiDAR data, a method for simulating degraded data for training is also presented. This LiDAR technique was validated using LiDAR data captured by the UMSLI system within Florida Atlantic University's Harbor Branch Oceanographic Institute (FAU-HBOI) optical test facility and at the Marine and Coastal Research Laboratory at the Pacific Northwest National Laboratory (MCRL-PNNL). This image enhancement technique can be readily extended to other underwater LiDAR systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Rui_Rui应助科研通管家采纳,获得10
刚刚
wlscj应助科研通管家采纳,获得20
刚刚
独特觅翠应助科研通管家采纳,获得10
刚刚
xcgh应助科研通管家采纳,获得10
1秒前
Xeno应助逃跑的炸鸡采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI6应助Lu采纳,获得10
2秒前
大鲨鱼完成签到 ,获得积分10
4秒前
小小谢发布了新的文献求助10
5秒前
7秒前
yan发布了新的文献求助10
7秒前
8秒前
8秒前
科研的豪哥完成签到 ,获得积分10
9秒前
9秒前
wanci应助998685采纳,获得10
10秒前
Apricity完成签到,获得积分10
10秒前
KOBE94FU发布了新的文献求助10
11秒前
科研通AI6应助fhhkckk3采纳,获得10
12秒前
充电宝应助WWW采纳,获得10
13秒前
xin完成签到 ,获得积分10
13秒前
超级驼鹿发布了新的文献求助10
14秒前
浮游应助nuliya采纳,获得10
14秒前
任性星星完成签到 ,获得积分10
14秒前
syangZ完成签到,获得积分10
16秒前
coco发布了新的文献求助80
16秒前
18秒前
18秒前
18秒前
19秒前
19秒前
CipherSage应助nnn采纳,获得10
19秒前
998685完成签到,获得积分20
20秒前
20秒前
NexusExplorer应助0713采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5320587
求助须知:如何正确求助?哪些是违规求助? 4462387
关于积分的说明 13886707
捐赠科研通 4353389
什么是DOI,文献DOI怎么找? 2391147
邀请新用户注册赠送积分活动 1384798
关于科研通互助平台的介绍 1354590