A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem

机械 多相流 统计物理学 计算机科学 应用数学 数学 物理
作者
Fei Jiang,Haihu Liu,Xian Chen,Takeshi Tsuji
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:454: 110963-110963 被引量:43
标识
DOI:10.1016/j.jcp.2022.110963
摘要

• A numerical scheme is proposed for the direct numerical simulation of complex solid-liquid-gas three-phase flows. • A coupled LBM-DEM model ensuring mass conservation is proposed. • The upward migration of the bubbles through a brine-filled sediment column is successfully simulated at various conditions. • Simulation results indicate three different flow regimes: connected finger flow, transition flow, and dispersed bubbly flow. • The dimensionless EO and WE numbers can identify the three different flow regimes. In this paper, we develop a numerical model for simulating the solid-liquid-gas three-phase flow in unconsolidated particle layers. Based on the discrete element method (DEM) and the multiphase fluid model in the framework of the lattice Boltzmann method (LBM), a multiphase fluid-solid two-way coupling algorithm is proposed. In this model, the fluid-fluid interface is tracked using a phase-field method, and the multiphase fluid-particle interaction is tackled by a combination of the momentum exchange method for the flow field and the immersed boundary method for the phase field. We applied the method to simulate the upward migration of the leaked gas bubbles through a brine-filled sediment column at the seafloor, and investigated the influences of the leak flow rate and the interfacial tension on the bubble rising behavior. The results indicate three different flow regimes: connected finger flow, transition flow, and dispersed bubbly flow. These flow regimes can be distinguished by the dimensionless Eötvös and Weber numbers. The proposed numerical method can accurately characterize various multiphase interaction mechanisms at the mesoscopic scale and has powerful advantages in simulating complex fluid-particle coupling problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
观莲客完成签到,获得积分10
1秒前
过时的花卷完成签到,获得积分10
2秒前
美丽垣完成签到,获得积分20
2秒前
满意世界完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
TouHouK发布了新的文献求助10
4秒前
5秒前
5秒前
7秒前
7秒前
云客完成签到 ,获得积分20
8秒前
8秒前
hh完成签到,获得积分10
9秒前
眼睛大的冰岚完成签到,获得积分10
10秒前
小雨发布了新的文献求助10
10秒前
汉堡转转转完成签到,获得积分10
10秒前
云里发布了新的文献求助10
10秒前
zheng完成签到,获得积分20
11秒前
酷炫寄真完成签到,获得积分10
11秒前
StonyinSICAU发布了新的文献求助10
11秒前
CodeCraft应助招财不肥采纳,获得10
11秒前
St雪发布了新的文献求助10
11秒前
纯情的天奇完成签到 ,获得积分10
12秒前
hanzhipad完成签到 ,获得积分10
12秒前
LZQ应助湖工大保卫处采纳,获得10
12秒前
honeylaker完成签到,获得积分10
14秒前
勤奋的猪完成签到,获得积分10
14秒前
14秒前
Niujy发布了新的文献求助10
14秒前
zhubin完成签到 ,获得积分10
15秒前
闫佳美完成签到,获得积分10
15秒前
上官若男应助sdl采纳,获得10
16秒前
16秒前
LYH完成签到,获得积分10
16秒前
pity发布了新的文献求助10
17秒前
17秒前
hanzhipad关注了科研通微信公众号
18秒前
科研通AI5应助兔子采纳,获得10
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828418
求助须知:如何正确求助?哪些是违规求助? 3370761
关于积分的说明 10464797
捐赠科研通 3090653
什么是DOI,文献DOI怎么找? 1700487
邀请新用户注册赠送积分活动 817859
科研通“疑难数据库(出版商)”最低求助积分说明 770566