已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Short-term photovoltaic power forecasting based on signal decomposition and machine learning optimization

光伏系统 水准点(测量) 计算机科学 电力系统 粒子群优化 预测建模 群体智能 人工智能 机器学习 功率(物理) 数据挖掘 工程类 地理 大地测量学 物理 电气工程 量子力学
作者
Yilin Zhou,Jianzhou Wang,Zhiwu Li,Haiyan Lu
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:267: 115944-115944 被引量:45
标识
DOI:10.1016/j.enconman.2022.115944
摘要

Owing to the continuous increase in the proportion of solar generation accounting for the total global generation, real-time management of solar power has become indispensable. Moreover, accurate prediction of photovoltaic power is emerging as an important link to support grid operations and reflect real-life scenarios. Various studies have led to the design of several forecasting models. Nevertheless, most predictors do not focus on the effects of the factors of photovoltaic modules on the forecast results. To fill this gap, in this paper, a novel multivariable hybrid prediction system combining signal decomposition, artificial intelligence models, deep learning models, and a swarm intelligence optimization strategy is proposed. This system fully utilizes independent variable features (including the module temperature) to efficiently enhance the precision and efficiency of photovoltaic forecasting. In particular, it is proved that a Pareto-optimal solution can be obtained using the designed system. Using three datasets obtained from Safi-Morocco, the presented system is verified by comparative experiments, and its remarkable advantages in terms of forecasting are demonstrated. Specifically, using the three datasets, the symmetric mean absolute percentage errors obtained by the presented forecast system are 2.129%, 2.335%, and 3.654%, respectively, which are significantly lower than those achieved with other comparison models. Furthermore, a comprehensive and rational evaluation methodology is employed to assess the predictive capability of the developed system. The evaluation results show that the system is effective in improving the forecasting efficiency and outperforms other benchmark models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助坦率千筹采纳,获得10
刚刚
我是老大应助guozizi采纳,获得10
1秒前
雪白峻熙发布了新的文献求助10
2秒前
henxi完成签到,获得积分10
5秒前
李爱国应助leilei02采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
12秒前
小二郎应助科研通管家采纳,获得10
12秒前
12秒前
英姑应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
丘比特应助科研通管家采纳,获得10
13秒前
猪猪hero应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
打打应助过儿采纳,获得10
13秒前
17秒前
雪白峻熙完成签到,获得积分10
18秒前
杨琴发布了新的文献求助10
18秒前
852应助aaa采纳,获得30
19秒前
NagatoYuki完成签到,获得积分10
19秒前
456完成签到,获得积分10
20秒前
李潇潇完成签到 ,获得积分10
21秒前
李爱国应助AAA采纳,获得10
22秒前
22秒前
23秒前
平常雨泽发布了新的文献求助10
23秒前
桐桐应助假面绅士采纳,获得30
24秒前
无心的仙人掌完成签到,获得积分20
25秒前
26秒前
26秒前
yangjiali完成签到 ,获得积分10
27秒前
29秒前
过儿发布了新的文献求助10
29秒前
55发布了新的文献求助10
30秒前
Zxx发布了新的文献求助10
30秒前
30秒前
李健应助cf2v采纳,获得10
31秒前
潮小坤发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815177
求助须知:如何正确求助?哪些是违规求助? 3359132
关于积分的说明 10400226
捐赠科研通 3076720
什么是DOI,文献DOI怎么找? 1689995
邀请新用户注册赠送积分活动 813514
科研通“疑难数据库(出版商)”最低求助积分说明 767673