Pedestrian Graph +: A Fast Pedestrian Crossing Prediction Model Based on Graph Convolutional Networks

行人 计算机科学 推论 图形 人行横道 卷积神经网络 人工智能 数据挖掘 理论计算机科学 工程类 运输工程
作者
Pablo Rodrigo Gantier Cadena,Yeqiang Qian,Chunxiang Wang,Ming Yang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 21050-21061 被引量:42
标识
DOI:10.1109/tits.2022.3173537
摘要

Estimating when pedestrians cross the street is essential for intelligent transportation systems. Accurate, real-time prediction is critical to ensure the safety of the most vulnerable road users while improving passenger comfort. In the present work, we developed a model called Pedestrian Graph +, an improvement of our previous work, Pedestrian Graph, which predicts pedestrian crossing action in urban areas based on a Graph Convolution Network. We integrated two convolutional modules in the new model that provide additional context information (cropped images, cropped segmentation maps, ego-vehicle velocity data) to the main Graph Convolutional module, thus increasing accuracy. Our model is faster and smaller than other state-of-the-art models, achieving equivalent accuracy. Our model is faster than state-of-the-art models, with an inference time of 6 ms (on a GTX 1080) and low memory consumption (0.3 MB). We tested our model on two datasets, Joint Attention in Autonomous Driving (JAAD) and Pedestrian Intention Estimation (PIE), achieving 86% and 89% accuracy, respectively. Another contribution of our work is the ability to dynamically process almost any input size in the time domain without significant loss of accuracy. It is possible due to the fully convolutional property of ConvNets. Our models and results are available at https://github.com/RodrigoGantier/Pedestrian_graph_plus .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
幸运星辰完成签到 ,获得积分10
1秒前
衣吾余完成签到 ,获得积分10
1秒前
3秒前
11应助糖布里部采纳,获得20
3秒前
3秒前
小池发布了新的文献求助10
3秒前
温暖飞双发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
搜集达人应助Rui_Rui采纳,获得10
5秒前
5秒前
科研通AI6应助cdbb采纳,获得10
5秒前
7秒前
烟花应助QTe采纳,获得10
7秒前
研友_VZG7GZ应助小田心采纳,获得10
7秒前
卡卡完成签到 ,获得积分10
8秒前
小爪冰凉应助June采纳,获得10
8秒前
长孙曼香完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
ewetylgkhlj发布了新的文献求助10
10秒前
10秒前
科目三应助justin采纳,获得10
11秒前
11应助火山羊采纳,获得20
11秒前
11秒前
12秒前
Lucas应助hannuannuan采纳,获得10
12秒前
luohao完成签到,获得积分10
12秒前
左丘明辉发布了新的文献求助10
13秒前
夕荀发布了新的文献求助10
13秒前
脑洞疼应助SC武采纳,获得30
14秒前
非鱼发布了新的文献求助10
14秒前
longlu发布了新的文献求助10
14秒前
14秒前
彩色傲菡完成签到,获得积分10
15秒前
ahyiziping发布了新的文献求助20
16秒前
LY发布了新的文献求助10
16秒前
哈哈完成签到 ,获得积分10
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746