Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing

蒸散量 环境科学 生物群落 算法 涡度相关法 遥感 计算机科学 校准 百分位 灵敏度(控制系统) 土地覆盖 均方误差 气象学 数学 统计 土地利用 地理 工程类 生态系统 土木工程 生态学 生物 电子工程
作者
Leonardo Laipelt,Rafael Henrique Bloedow Kayser,Ayan Santos Fleischmann,Anderson Ruhoff,W.G.M. Bastiaanssen,Tyler Erickson,F. S. Melton
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:178: 81-96 被引量:97
标识
DOI:10.1016/j.isprsjprs.2021.05.018
摘要

Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day−1 when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day−1 when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YJ888发布了新的文献求助10
1秒前
spujo应助英勇梦安采纳,获得10
1秒前
王jh发布了新的文献求助10
1秒前
1秒前
2秒前
行歌发布了新的文献求助10
3秒前
曦月发布了新的文献求助10
5秒前
科研通AI5应助许win采纳,获得30
5秒前
FashionBoy应助美女采纳,获得10
6秒前
7秒前
科目三应助黄子腾采纳,获得10
7秒前
9秒前
我是老大应助roumaoliang采纳,获得10
10秒前
靓丽大神发布了新的文献求助10
10秒前
jyyg发布了新的文献求助10
13秒前
22发布了新的文献求助10
13秒前
肖耶啵应助PL采纳,获得10
14秒前
14秒前
15秒前
clown应助Animagus采纳,获得50
15秒前
彬彬完成签到,获得积分10
18秒前
Jasper应助高挑的小蕊采纳,获得10
18秒前
Hello应助海凌钟采纳,获得10
18秒前
马小马发布了新的文献求助10
18秒前
呐呐发布了新的文献求助30
19秒前
科研通AI5应助LLL采纳,获得10
21秒前
可爱的函函应助亢kxh采纳,获得10
22秒前
24秒前
25秒前
qipengli完成签到,获得积分10
27秒前
27秒前
28秒前
22完成签到,获得积分10
28秒前
dxc完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
Liang完成签到,获得积分10
30秒前
小蘑菇应助梦里采纳,获得10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787625
求助须知:如何正确求助?哪些是违规求助? 3333214
关于积分的说明 10260263
捐赠科研通 3048828
什么是DOI,文献DOI怎么找? 1673284
邀请新用户注册赠送积分活动 801756
科研通“疑难数据库(出版商)”最低求助积分说明 760338