清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Balance learning for ship detection from synthetic aperture radar remote sensing imagery

计算机科学 合成孔径雷达 人工智能 平衡(能力) 逆合成孔径雷达 变更检测 雷达 雷达成像 遥感 地质学 电信 医学 物理医学与康复
作者
Tianwen Zhang,Xiaoling Zhang,Chang Liu,Jun Shi,Shunjun Wei,Israr Ahmad,Xu Zhan,Yue Zhou,Dece Pan,Jianwei Li,Hao Su
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:182: 190-207 被引量:142
标识
DOI:10.1016/j.isprsjprs.2021.10.010
摘要

Synthetic aperture radar (SAR) is playing an important role in maritime domain awareness. As a fundamental ocean mission, SAR ship detection can offer high-quality services for marine surveillance. It receives widespread concern in the SAR remote sensing community. Recently, deep learning (DL) has greatly improved SAR ship detection accuracy. However, there are still some unperceived imbalance problems that seriously hinder further accuracy improvements among current DL-based SAR ship detectors. Therefore, we propose a novel concept of balance learning (BL) for high-quality SAR ship detection. We first point out the four unperceived imbalance problems, i.e., image sample scene imbalance, positive negative sample imbalance, ship scale feature imbalance, and classification regression task imbalance. Then, we offer some profound insights into these imbalances. Immediately, we propose four effective solutions to handle the above four imbalances correspondingly, i.e., balance scene learning mechanism (BSLM), balance interval sampling mechanism (BISM), balance feature pyramid network (BFPN), and balance classification regression network (BCRN). Finally, combined with the four solutions, a novel balance learning network (BL-Net) is proposed. Ablation studies can confirm each solution’s effectiveness. Experimental results on five open datasets (SSDD, Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-Dataset, and HRSID) reveal BL-Net’s state-of-the-art SAR ship detection performance compared to the other 30 DL-based SAR ship detectors. Specifically, in contrast to the current most competitive method, the accuracy increase of BL-Net is 2.98% on SSDD, 1.97% on Gaofen-SSDD, 1.49% on Sentinel-SSDD, 0.55% on SAR-Ship-Dataset, and 4.95% on HRSID. Last but not least, the satisfactory ship detection results on another two large-scene Sentinal-1 SAR images confirm BL-Net’s strong migration capability. This indicates BL-Net’s potential value in marine surveillance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
1秒前
11秒前
缓慢雨南发布了新的文献求助10
18秒前
ceeray23应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
19秒前
ceeray23应助科研通管家采纳,获得10
20秒前
ceeray23应助科研通管家采纳,获得10
20秒前
20秒前
kgf完成签到 ,获得积分20
23秒前
曹国庆完成签到 ,获得积分10
32秒前
orixero应助ceeray23采纳,获得20
39秒前
斯文败类应助ceeray23采纳,获得20
43秒前
1分钟前
1分钟前
袁青寒发布了新的文献求助10
1分钟前
科研通AI2S应助ceeray23采纳,获得20
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
云锋完成签到,获得积分10
1分钟前
Cassie完成签到,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
jsinm-thyroid完成签到 ,获得积分10
2分钟前
qinghe完成签到 ,获得积分10
2分钟前
铁瓜李完成签到 ,获得积分10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
Japrin完成签到,获得积分10
3分钟前
霜降完成签到,获得积分10
3分钟前
3分钟前
abc完成签到 ,获得积分0
3分钟前
霜降发布了新的文献求助10
3分钟前
Cassie发布了新的文献求助20
4分钟前
lyqs215完成签到,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
mkeale发布了新的文献求助10
4分钟前
安安完成签到,获得积分10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685622
关于积分的说明 14838712
捐赠科研通 4672749
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965