清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatiotemporal causal convolutional network for forecasting hourly PM2.5 concentrations in Beijing, China

北京 卷积神经网络 环境科学 计算机科学 空气质量指数 气象学 人工神经网络 深度学习 中国 污染 数据挖掘 人工智能 地理 生态学 生物 考古
作者
Lei Zhang,Jiaming Na,Jie Zhu,Zhikuan Shi,Changxin Zou,Lin Yang
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:155: 104869-104869 被引量:45
标识
DOI:10.1016/j.cageo.2021.104869
摘要

Air pollution in Northeastern Asia is a serious environmental problem, especially in China where PM2.5 levels are quite high. Accurate PM2.5 predictions are significant to environmental management and human health. Recently, deep learning has received increasing attention from relevant researchers. In this work, a spatiotemporal causal convolutional neural network (ST-CausalConvNet) for short-term PM2.5 prediction is proposed. The distinguishing characteristics of the proposed model is that the convolutions in the model architecture are causal, where an output at a certain time step is convolved only with elements from the same or earlier time steps in the previous layer. Accordingly, no information leakage is induced from the future to the past in this model. The spatial dependence between multiple monitoring stations was also considered in the model. Spatiotemporal correlation analysis was performed to select relevant information from monitoring stations that have a high relationship with the target station. The information from the target and related stations were then employed as the inputs and fed into the model. A case study from May 1, 2014 to April 30, 2015 in Beijing, China was conducted. The next hour PM2.5 concentration was predicted by the proposed model by using historical air quality and meteorological data from 36 monitoring stations. Experimental results show that the trends of the predicted PM2.5 concentrations and the observed values were consistent. The proposed method achieved a better prediction performance than the other three comparative models, namely artificial neural network (ANN), gated recurrent unit (GRU), and long short-term memory (LSTM). Furthermore, the effects of the important parameters and the model transferability were also conducted. We conclude that the proposed ST-CausalConvNet is a potential effective model for air pollution forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王一生完成签到,获得积分0
6秒前
lhl完成签到,获得积分10
15秒前
李健的小迷弟应助volvoamg采纳,获得20
16秒前
GreenDuane完成签到 ,获得积分0
21秒前
ZZzz完成签到 ,获得积分10
22秒前
科研通AI2S应助钱念波采纳,获得10
25秒前
ZHANG完成签到 ,获得积分10
28秒前
fang完成签到,获得积分10
1分钟前
高高的笑柳完成签到 ,获得积分10
1分钟前
王佳豪完成签到,获得积分10
1分钟前
Damon完成签到 ,获得积分10
1分钟前
2分钟前
秋夜临完成签到,获得积分10
2分钟前
球球球心完成签到,获得积分10
2分钟前
球球球心发布了新的文献求助10
2分钟前
kean1943完成签到,获得积分10
2分钟前
萨尔莫斯完成签到,获得积分10
3分钟前
无情夏寒完成签到 ,获得积分10
3分钟前
今后应助飞翔的企鹅采纳,获得10
3分钟前
Sean完成签到 ,获得积分10
3分钟前
JY完成签到 ,获得积分10
3分钟前
席江海完成签到,获得积分10
3分钟前
飞翔的企鹅完成签到,获得积分10
3分钟前
digger2023完成签到 ,获得积分10
3分钟前
madison完成签到 ,获得积分10
3分钟前
Aurora完成签到 ,获得积分10
4分钟前
wxyinhefeng完成签到 ,获得积分10
4分钟前
Shrimp完成签到 ,获得积分10
4分钟前
xiaosui完成签到 ,获得积分10
4分钟前
LZQ发布了新的文献求助10
4分钟前
5分钟前
天边发布了新的文献求助10
5分钟前
5分钟前
GG完成签到 ,获得积分10
5分钟前
WTaMi完成签到 ,获得积分10
5分钟前
Owllight发布了新的文献求助30
5分钟前
Galri完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
甜甜友容完成签到,获得积分10
6分钟前
czj完成签到 ,获得积分10
6分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798514
求助须知:如何正确求助?哪些是违规求助? 3344044
关于积分的说明 10318410
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679695
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340