Spatiotemporal causal convolutional network for forecasting hourly PM2.5 concentrations in Beijing, China

北京 卷积神经网络 环境科学 计算机科学 空气质量指数 气象学 人工神经网络 深度学习 中国 污染 数据挖掘 人工智能 地理 生态学 生物 考古
作者
Lei Zhang,Jiaming Na,Jie Zhu,Zhikuan Shi,Changxin Zou,Lin Yang
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:155: 104869-104869 被引量:45
标识
DOI:10.1016/j.cageo.2021.104869
摘要

Air pollution in Northeastern Asia is a serious environmental problem, especially in China where PM2.5 levels are quite high. Accurate PM2.5 predictions are significant to environmental management and human health. Recently, deep learning has received increasing attention from relevant researchers. In this work, a spatiotemporal causal convolutional neural network (ST-CausalConvNet) for short-term PM2.5 prediction is proposed. The distinguishing characteristics of the proposed model is that the convolutions in the model architecture are causal, where an output at a certain time step is convolved only with elements from the same or earlier time steps in the previous layer. Accordingly, no information leakage is induced from the future to the past in this model. The spatial dependence between multiple monitoring stations was also considered in the model. Spatiotemporal correlation analysis was performed to select relevant information from monitoring stations that have a high relationship with the target station. The information from the target and related stations were then employed as the inputs and fed into the model. A case study from May 1, 2014 to April 30, 2015 in Beijing, China was conducted. The next hour PM2.5 concentration was predicted by the proposed model by using historical air quality and meteorological data from 36 monitoring stations. Experimental results show that the trends of the predicted PM2.5 concentrations and the observed values were consistent. The proposed method achieved a better prediction performance than the other three comparative models, namely artificial neural network (ANN), gated recurrent unit (GRU), and long short-term memory (LSTM). Furthermore, the effects of the important parameters and the model transferability were also conducted. We conclude that the proposed ST-CausalConvNet is a potential effective model for air pollution forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xiaoguo完成签到,获得积分20
刚刚
刚刚
想退休了完成签到 ,获得积分10
1秒前
1秒前
朴实的依风应助zyyin采纳,获得50
1秒前
1秒前
迅速采波发布了新的文献求助10
1秒前
guoxuefan完成签到,获得积分10
4秒前
所所应助泡面小分队采纳,获得10
4秒前
ambernameswu发布了新的文献求助10
5秒前
花生仔发布了新的文献求助10
5秒前
6秒前
眯眯眼的柏柳完成签到 ,获得积分10
6秒前
澹台灭明完成签到,获得积分10
6秒前
7秒前
69完成签到,获得积分10
8秒前
8秒前
圆红完成签到 ,获得积分10
8秒前
缓慢迎波完成签到,获得积分10
8秒前
典雅的问玉完成签到,获得积分10
8秒前
彭于晏应助ambernameswu采纳,获得10
11秒前
12365完成签到,获得积分10
11秒前
糖葫芦发布了新的文献求助10
11秒前
奋斗的冬云完成签到,获得积分10
11秒前
努力成为科研大佬完成签到,获得积分10
11秒前
wu完成签到,获得积分10
11秒前
刘欣完成签到,获得积分20
13秒前
赘婿应助小白采纳,获得10
13秒前
。。。伟发布了新的文献求助30
14秒前
14秒前
栗栗栗完成签到,获得积分10
15秒前
JamesPei应助医路有你采纳,获得10
15秒前
初末发布了新的文献求助10
15秒前
Hu完成签到,获得积分10
16秒前
星辰大海应助Sherry采纳,获得10
17秒前
19秒前
香蕉觅云应助梦涵采纳,获得10
21秒前
从容傲柏发布了新的文献求助10
24秒前
25秒前
英姑应助nwj123654采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297378
求助须知:如何正确求助?哪些是违规求助? 4446252
关于积分的说明 13838954
捐赠科研通 4331436
什么是DOI,文献DOI怎么找? 2377667
邀请新用户注册赠送积分活动 1372899
关于科研通互助平台的介绍 1338445