亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MetaHTR: Towards Writer-Adaptive Handwritten Text Recognition

计算机科学 杠杆(统计) 人工智能 集合(抽象数据类型) 利用 推论 写作风格 自然语言处理 机器学习 语言学 计算机安全 哲学 程序设计语言
作者
Ayan Kumar Bhunia,Shuvozit Ghose,Amandeep Kumar,Pinaki Nath Chowdhury,Aneeshan Sain,Yi-Zhe Song
标识
DOI:10.1109/cvpr46437.2021.01557
摘要

Handwritten Text Recognition (HTR) remains a challenging problem to date, largely due to the varying writing styles that exist amongst us. Prior works however generally operate with the assumption that there is a limited number of styles, most of which have already been captured by existing datasets. In this paper, we take a completely different perspective – we work on the assumption that there is always a new style that is drastically different, and that we will only have very limited data during testing to perform adaptation. This creates a commercially viable solution – being exposed to the new style, the model has the best shot at adaptation, and the few-sample nature makes it practical to implement. We achieve this via a novel meta-learning framework which exploits additional new-writer data via a support set, and outputs a writer-adapted model via single gradient step update, all during inference (see Figure 1). We discover and leverage on the important insight that there exists few key characters per writer that exhibit relatively larger style discrepancies. For that, we additionally propose to meta-learn instance specific weights for a character-wise cross-entropy loss, which is specifically designed to work with the sequential nature of text data. Our writer-adaptive MetaHTR framework can be easily implemented on the top of most state-of-the-art HTR models. Experiments show an average performance gain of 5-7% can be obtained by observing very few new style data (≤ 16).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiaobu完成签到,获得积分10
21秒前
32秒前
33秒前
ding应助jiaobu采纳,获得30
1分钟前
发发发发发完成签到,获得积分20
1分钟前
1分钟前
Dou发布了新的文献求助10
1分钟前
1分钟前
草木发布了新的文献求助10
1分钟前
walid56i完成签到,获得积分10
1分钟前
Dou完成签到,获得积分10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Vivian完成签到 ,获得积分10
1分钟前
一剑温柔完成签到 ,获得积分10
2分钟前
2分钟前
柔弱友菱发布了新的文献求助30
2分钟前
行李早已收拾好丶完成签到,获得积分10
2分钟前
SciGPT应助柔弱友菱采纳,获得10
2分钟前
zzhui完成签到,获得积分10
3分钟前
yyy发布了新的文献求助10
3分钟前
116完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
NexusExplorer应助JY采纳,获得10
4分钟前
后陡门的夏天完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
JY发布了新的文献求助10
4分钟前
喜羊羊完成签到,获得积分10
4分钟前
wanci应助Tiger采纳,获得10
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
6分钟前
Tiger发布了新的文献求助10
6分钟前
光合作用完成签到,获得积分10
6分钟前
6分钟前
7分钟前
桐桐应助科研通管家采纳,获得10
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300837
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762563