SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks.

管道(软件) 人工智能 算法
作者
Shaya Akbarinejad,Mostafa Hadadian Nejad Yousefi,Maziar Goudarzi
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:22 (1): 335-335 被引量:1
标识
DOI:10.1186/s12859-021-04184-7
摘要

Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads that takes raw reads as the input and detects structural variants of size larger than 50 bp. Our pipeline utilizes state-of-the-art long-read aligners, namely NGMLR and Minimap2, and structural variation callers, videlicet Sniffle and SVIM. We found that by using a neural network, we can extract features from Minimap2 output to detect a subset of reads that provide useful information for structural variation detection. By only mapping this subset with NGMLR, which is far slower than Minimap2 but better serves downstream structural variation detection, we can increase the sensitivity in an efficient way. As a result of using multiple tools intelligently, SVNN achieves up to 20 percentage points of sensitivity improvement in comparison with state-of-the-art methods and is three times faster than a naive combination of state-of-the-art tools to achieve almost the same accuracy. Since prohibitive costs of using high-coverage data have impeded long-read applications, with SVNN, we provide the users with a much faster structural variation detection platform for PacBio reads with high precision and sensitivity in low-coverage scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹果冬莲完成签到,获得积分10
1秒前
英姑应助超A芝士葡萄采纳,获得10
1秒前
搜集达人应助xiaopan采纳,获得10
1秒前
2秒前
2秒前
飞飞发布了新的文献求助10
3秒前
3秒前
朱柯虹发布了新的文献求助10
5秒前
wanci应助旗树树采纳,获得10
5秒前
f1sh完成签到,获得积分10
5秒前
王十三完成签到 ,获得积分10
6秒前
6秒前
6秒前
汉堡包应助小清新采纳,获得10
7秒前
小美发布了新的文献求助10
7秒前
酷波er应助叶文言采纳,获得10
7秒前
8秒前
11发布了新的文献求助10
8秒前
求您帮个忙完成签到,获得积分20
8秒前
long完成签到,获得积分10
9秒前
9秒前
Geo_new发布了新的文献求助10
10秒前
10秒前
黑YA完成签到,获得积分20
10秒前
研友_Ljb0qL完成签到,获得积分10
11秒前
11秒前
11秒前
lh345769764发布了新的文献求助10
11秒前
万能图书馆应助烂漫梦之采纳,获得10
12秒前
12秒前
共享精神应助rnanoda采纳,获得10
12秒前
科研通AI5应助果果采纳,获得10
12秒前
TT完成签到 ,获得积分10
13秒前
13秒前
14秒前
14秒前
15秒前
醒醒完成签到 ,获得积分10
16秒前
xiao发布了新的文献求助10
16秒前
TT关注了科研通微信公众号
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5087747
求助须知:如何正确求助?哪些是违规求助? 4302968
关于积分的说明 13409636
捐赠科研通 4128431
什么是DOI,文献DOI怎么找? 2260914
邀请新用户注册赠送积分活动 1265026
关于科研通互助平台的介绍 1199399