Machine-learning insights into nitrate-reducing communities in a full-scale municipal wastewater treatment plant

缺氧水域 污水处理 硝酸盐 环境科学 支持向量机 废水 超参数优化 微生物种群生物学 生态学 机器学习 生化工程 计算机科学 环境工程 生物 工程类 遗传学 细菌
作者
Youngjun Kim,Seungdae Oh
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:300: 113795-113795 被引量:38
标识
DOI:10.1016/j.jenvman.2021.113795
摘要

This study carried out machine-learning (ML) modeling using activated sludge microbiome data to predict the operational characteristics of biological unit processes (i.e., anaerobic, anoxic, and aerobic) in a full-scale municipal wastewater treatment plant. An ML application pipeline with optimization strategies (e.g., model selection, input data preprocessing, and hyperparameter tuning) could significantly improve prediction performance. Comparative analysis of the ML prediction performance suggested that linear models (support vector machine and logistic regression) had a high prediction performance (93% accuracy), comparable to that of non-linear models such as random forest. Feature importance analysis using the linear ML models identified the microbial taxa that were specifically associated with anoxic processes, many of which (e.g., Ferruginibacter) were found to have ecologically important genomic and phenotypic characteristics (e.g., for nitrate reduction). Time-series microbial community dynamics demonstrated that the taxa identified using ML were frequently occurring and dominating in the anoxic process over time, thus representing the core nitrate-reducing community. Despite the general dominance of the core community over time, the analysis further revealed successional seasonal patterns of distinct sub-groups, indicating differences in the functional contribution of sub-groups by season to the overall nitrate-reducing potential of the system. Overall, the results of this study suggest that ML modeling holds great promise for the predictive identification and understanding of key microbial players governing the functioning and stability of biological wastewater systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助msw采纳,获得10
刚刚
香瓜发布了新的文献求助10
1秒前
2秒前
沸腾的大海完成签到,获得积分10
3秒前
科研通AI5应助fcyyc采纳,获得10
3秒前
奈何发布了新的文献求助10
4秒前
WaNgBO完成签到,获得积分10
4秒前
kingwill发布了新的文献求助30
4秒前
鸿十三陵发布了新的文献求助10
5秒前
5秒前
5秒前
科研小鱼完成签到,获得积分10
6秒前
龙傲天发布了新的文献求助10
7秒前
热血马儿完成签到,获得积分10
8秒前
田様应助戚志强采纳,获得10
9秒前
隐形的雪碧完成签到,获得积分10
9秒前
可积完成签到,获得积分10
9秒前
香瓜完成签到,获得积分10
10秒前
ZS0901完成签到,获得积分10
11秒前
11秒前
大王完成签到,获得积分10
11秒前
11秒前
OK不服气完成签到,获得积分10
11秒前
烟花应助大林采纳,获得10
12秒前
奈何完成签到,获得积分20
13秒前
14秒前
英俊的铭应助sdl采纳,获得10
14秒前
义气凡阳完成签到,获得积分10
14秒前
大模型应助雍以菱采纳,获得10
14秒前
学术疯子发布了新的文献求助10
15秒前
nini完成签到,获得积分10
15秒前
16秒前
zzzj发布了新的文献求助10
19秒前
19秒前
吴晨曦发布了新的文献求助20
19秒前
19秒前
万能图书馆应助追寻盼烟采纳,获得10
20秒前
msw发布了新的文献求助10
20秒前
21秒前
123456完成签到,获得积分20
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842011
求助须知:如何正确求助?哪些是违规求助? 3384056
关于积分的说明 10532506
捐赠科研通 3104394
什么是DOI,文献DOI怎么找? 1709629
邀请新用户注册赠送积分活动 823315
科研通“疑难数据库(出版商)”最低求助积分说明 773909