DPSNet: Multitask Learning Using Geometry Reasoning for Scene Depth and Semantics

计算机科学 人工智能 分割 语义学(计算机科学) 计算机视觉 一致性(知识库) 像素 多任务学习 单眼 任务(项目管理) 管理 经济 程序设计语言
作者
Junning Zhang,Qunxing Su,Bo Tang,Cheng Wang,Yining Li
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 2710-2721 被引量:51
标识
DOI:10.1109/tnnls.2021.3107362
摘要

Multitask joint learning technology continues gaining more attention as a paradigm shift and has shown promising performance in many applications. Depth estimation and semantic understanding from monocular images emerge as a challenging problem in computer vision. While the other joint learning frameworks establish the relationship between the semantics and depth from stereo pairs, the lack of learning camera motion renders the frameworks that fail to model the geometric structure of the image scene. We make a further step in this article by proposing a multitask learning method, namely DPSNet, which can jointly perform depth and camera pose estimation and semantic scene segmentation. Our core idea for depth and camera pose prediction is that we present the rigid semantic consistency loss to overcome the limitation of moving pixels from image reconstruction technology and further infer the segmentation of moving instances based on them. In addition, our proposed model performs semantic segmentation by reasoning the geometric correspondences between the pixel semantic outputs and the semantic labels at multiscale resolutions. Experiments on open-source datasets and a video dataset captured on a micro-smart car show the effectiveness of each component of DPSNet, and DPSNet achieves state-of-the-art results in all three tasks compared with the best popular methods. All our models and code are available at https://github.com/jn-z/DPSNet: Multitask Learning Using Geometry Reasoning for Scene Depth and semantics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
windy发布了新的文献求助10
刚刚
刚刚
刚刚
LXX不钻牛角尖完成签到,获得积分10
刚刚
嗯哼发布了新的文献求助30
刚刚
刚刚
程雯慧发布了新的文献求助10
1秒前
黑风小妖发布了新的文献求助10
1秒前
1秒前
www完成签到,获得积分10
1秒前
1秒前
CWNU_HAN应助哎呀妈呀采纳,获得30
2秒前
执意发布了新的文献求助10
2秒前
咩咩兔发布了新的文献求助10
2秒前
2秒前
原野发布了新的文献求助10
3秒前
Ivan完成签到,获得积分10
3秒前
tmobiusx发布了新的文献求助30
3秒前
于佳发布了新的文献求助10
3秒前
科研通AI5应助756采纳,获得10
3秒前
yyyyyy发布了新的文献求助10
5秒前
务实的冬寒完成签到 ,获得积分20
5秒前
WizBLue发布了新的文献求助30
5秒前
淳之风发布了新的文献求助10
5秒前
自觉葶发布了新的文献求助10
6秒前
小二郎应助小小富采纳,获得10
6秒前
yltstt完成签到,获得积分10
6秒前
did111发布了新的文献求助10
6秒前
SYLH应助毕之采纳,获得10
6秒前
慕青应助我的小宝贝采纳,获得10
7秒前
阿兀完成签到,获得积分10
7秒前
风趣过客完成签到,获得积分10
7秒前
花生王子完成签到 ,获得积分10
7秒前
852应助合适夏天采纳,获得10
8秒前
Lucas应助EED采纳,获得10
9秒前
ke完成签到 ,获得积分10
9秒前
陈子旋发布了新的文献求助20
9秒前
10秒前
科研通AI5应助不想看文献采纳,获得10
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838822
求助须知:如何正确求助?哪些是违规求助? 3381252
关于积分的说明 10517468
捐赠科研通 3100694
什么是DOI,文献DOI怎么找? 1707708
邀请新用户注册赠送积分活动 821857
科研通“疑难数据库(出版商)”最低求助积分说明 773033