Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA

铁电性 密度泛函理论 材料科学 偶极子 局部密度近似 点反射 凝聚态物理 极化密度 混合功能 极地的 压电 计算化学 物理 化学 量子力学 电介质 光电子学 磁场 磁化 复合材料
作者
Yubo Zhang,Jianwei Sun,John P. Perdew,Xifan Wu
出处
期刊:Physical review [American Physical Society]
卷期号:96 (3) 被引量:182
标识
DOI:10.1103/physrevb.96.035143
摘要

Originating from a broken spatial inversion symmetry, ferroelectricity is a functionality of materials with an electric dipole that can be switched by external electric fields. Spontaneous polarization is a crucial ferroelectric property, and its amplitude is determined by the strength of polar structural distortions. Density functional theory (DFT) is one of the most widely used theoretical methods to study ferroelectric properties, yet it is limited by the levels of approximations in electron exchange-correlation. On the one hand, the local density approximation (LDA) is considered to be more accurate for the conventional perovskite ferroelectrics such as $\mathrm{BaTi}{\mathrm{O}}_{3}$ and $\mathrm{PbTi}{\mathrm{O}}_{3}$ than the generalized gradient approximation (GGA), which suffers from the so-called super-tetragonality error. On the other hand, GGA is more suitable for hydrogen-bonded ferroelectrics than LDA, which largely overestimates the strength of hydrogen bonding in general. We show here that the recently developed general-purpose strongly constrained and appropriately normed (SCAN) meta-GGA functional significantly improves over the traditional LDA/GGA for structural, electric, and energetic properties of diversely bonded ferroelectric materials with a comparable computational effort and thus enhances largely the predictive power of DFT in studies of ferroelectric materials. We also address the observed system-dependent performances of LDA and GGA for ferroelectrics from a chemical bonding point of view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beichuanheqi应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得10
刚刚
若雨凌风应助科研通管家采纳,获得20
刚刚
Akim应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得80
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得30
1秒前
SYLH应助科研通管家采纳,获得10
1秒前
1秒前
charry发布了新的文献求助10
1秒前
wuchun完成签到,获得积分10
2秒前
小蘑菇应助su采纳,获得10
2秒前
彬子发布了新的文献求助20
2秒前
期刊应助张惠采纳,获得10
2秒前
JacksonHe发布了新的文献求助10
2秒前
科研通AI5应助炫炫炫采纳,获得10
3秒前
4秒前
JXL发布了新的文献求助10
5秒前
脑洞疼应助虚心的爆米花采纳,获得10
5秒前
5秒前
韩凡完成签到,获得积分10
6秒前
赘婿应助丙丙sunny采纳,获得10
7秒前
领导范儿应助龙哥采纳,获得10
8秒前
立里完成签到,获得积分10
10秒前
10秒前
orixero应助韩凡采纳,获得10
11秒前
lgj给七星龙渊的求助进行了留言
12秒前
12秒前
14秒前
wanghua完成签到,获得积分10
14秒前
安琦发布了新的文献求助10
16秒前
共享精神应助隐形觅翠采纳,获得10
16秒前
16秒前
炙热的羽毛完成签到,获得积分10
16秒前
凌志发布了新的文献求助10
17秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831805
求助须知:如何正确求助?哪些是违规求助? 3373943
关于积分的说明 10482648
捐赠科研通 3093880
什么是DOI,文献DOI怎么找? 1703103
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771411