A global expectation-maximization based on memetic swarm optimization for structural damage detection

计算机科学 离群值 数学优化 最大化 粒子群优化 结构健康监测 数据挖掘 人工智能 机器学习 工程类 数学 结构工程
作者
Adam Santos,Moisés Silva,Reginaldo Santos,Elói Figueiredo,Claudomiro Sales,João C. W. A. Costa
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:15 (5): 610-625 被引量:31
标识
DOI:10.1177/1475921716654433
摘要

During the service life of engineering structures, structural management systems attempt to manage all the information derived from regular inspections, evaluations and maintenance activities. However, the structural management systems still rely deeply on qualitative and visual inspections, which may impact the structural evaluation and, consequently, the maintenance decisions as well as the avoidance of collapses. Meanwhile, structural health monitoring arises as an effective discipline to aid the structural management, providing more reliable and quantitative information; herein, the machine learning algorithms have been implemented to expose structural anomalies from monitoring data. In particular, the Gaussian mixture models, supported by the expectation-maximization (EM) algorithm for parameter estimation, have been proposed to model the main clusters that correspond to the normal and stable state conditions of a structure when influenced by several sources of operational and environmental variations. Unfortunately, the optimal parameters determined by the EM algorithm are heavily dependent on the choice of the initial parameters. Therefore, this paper proposes a memetic algorithm based on particle swarm optimization (PSO) to improve the stability and reliability of the EM algorithm, a global EM (GEM-PSO), in searching for the optimal number of components (or data clusters) and their parameters, which enhances the damage classification performance. The superiority of the GEM-PSO approach over the state-of-the-art ones is attested on damage detection strategies implemented through the Mahalanobis and Euclidean distances, which permit one to track the outlier formation in relation to the main clusters, using real-world data sets from the Z-24 Bridge (Switzerland) and Tamar Bridge (United Kingdom).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eon发布了新的文献求助10
1秒前
Lucas应助木木采纳,获得30
1秒前
小刘恨香菜完成签到 ,获得积分10
1秒前
2秒前
Tracy完成签到,获得积分10
2秒前
wanci应助Nelson采纳,获得10
2秒前
爆米花应助OrangeBlueHeart采纳,获得10
3秒前
111完成签到,获得积分10
3秒前
SYLH应助huhutu采纳,获得10
4秒前
奋斗金连完成签到,获得积分10
5秒前
猪嗝铁铁发布了新的文献求助10
6秒前
8秒前
9秒前
orixero应助务实的听筠采纳,获得10
9秒前
追寻纲完成签到,获得积分10
10秒前
11秒前
13秒前
顾矜应助Eon采纳,获得10
14秒前
15秒前
Nelson发布了新的文献求助10
16秒前
科研通AI5应助xiixix采纳,获得10
17秒前
科研通AI2S应助ranlan采纳,获得10
17秒前
情怀应助轩然采纳,获得10
17秒前
谷捣猫宁发布了新的文献求助10
18秒前
sudaxia100发布了新的文献求助10
19秒前
小白完成签到,获得积分10
19秒前
20秒前
烟花应助captainHc采纳,获得10
20秒前
HJJHJH发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
丘比特应助不要加糖采纳,获得10
24秒前
24秒前
搜集达人应助威士忌www采纳,获得10
24秒前
谷捣猫宁完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
Hiker发布了新的文献求助10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797784
求助须知:如何正确求助?哪些是违规求助? 3343264
关于积分的说明 10315131
捐赠科研通 3060016
什么是DOI,文献DOI怎么找? 1679212
邀请新用户注册赠送积分活动 806436
科研通“疑难数据库(出版商)”最低求助积分说明 763150