Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living in People With Parkinson’s Disease

日常生活活动 惯性测量装置 物理医学与康复 康复 可穿戴计算机 分割 稳健性(进化) 计算机科学 生活质量(医疗保健) 医学 人工智能 物理疗法 护理部 嵌入式系统 病理 基因 化学 生物化学
作者
Hung Nguyen,Karina Lebel,Sarah Bogard,Étienne Goubault,Patrick Boissy,Christian Duval
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:26 (1): 197-204 被引量:73
标识
DOI:10.1109/tnsre.2017.2745418
摘要

Wearable sensors such as inertial measurement units (IMUs) have been widely used to measure the quantity of physical activities during daily living in healthy and people with movement disorders through activity classification. These sensors have the potential to provide valuable information to evaluate the quality of the movement during the activities of daily living (ADL), such as walking, sitting down, and standing up, which could help clinicians to monitor rehabilitation and pharmaceutical interventions. However, high accuracy in the detection and segmentation of these activities is necessary for proper evaluation of the quality of the performance within a given segment. This paper presents algorithms to process IMU data, to detect and segment unstructured ADL in people with Parkinson's disease (PD) in simulated free-living environment. The proposed method enabled the detection of 1610 events of ADL performed by nine community dwelling older adults with PD under simulated free-living environment with 90% accuracy (sensitivity = 90.8%, specificity = 97.8%) while segmenting these activities within 350 ms of the "gold-standard" manual segmentation. These results demonstrate the robustness of the proposed method to eventually be used to automatically detect and segment ADL in free-living environment in people with PD. This could potentially lead to a more expeditious evaluation of the quality of the movement and administration of proper corrective care for patients who are under physical rehabilitation and pharmaceutical intervention for movement disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wz发布了新的文献求助10
刚刚
Kk完成签到,获得积分10
1秒前
a1313完成签到,获得积分10
1秒前
CY关注了科研通微信公众号
1秒前
2秒前
2秒前
3秒前
Jason完成签到,获得积分10
5秒前
5秒前
5秒前
素雅发布了新的文献求助10
6秒前
pu发布了新的文献求助10
6秒前
勤恳剑身完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
大模型应助淡淡土豆采纳,获得10
8秒前
我是老大应助YZQ采纳,获得10
8秒前
8秒前
cailiaokexue发布了新的文献求助10
9秒前
qqqJUAN完成签到,获得积分10
9秒前
自然可乐完成签到,获得积分10
10秒前
善学以致用应助小李呀采纳,获得10
10秒前
11秒前
咖啡头发完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
12秒前
12秒前
wsx完成签到,获得积分10
12秒前
13秒前
眼睛大智宸完成签到,获得积分10
14秒前
14秒前
15秒前
吴晗发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
15秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595