磁制冷
镝
稀土
制冷
材料科学
热力学
制冷剂
凝聚态物理
化学
磁化
冶金
无机化学
磁场
物理
量子力学
气体压缩机
作者
Austin McDannald,M. Jain
摘要
Recently, there has been a focus on the need for efficient refrigeration technology without the use of expensive or harmful working fluids, especially at temperatures below 30 K. Solid state refrigeration, based on the magnetocaloric effect, provides a possible solution to this problem. The rare-earth chromites (RCrO3), especially DyCrO3, with its large magnetic moment dysprosium ion, are potential candidates for such an application. The Dy3+ ordering transition at low temperatures (<10 K) likely causes a large magnetocaloric response in this material. This study investigates the possibility of tuning the magnetocaloric properties through the use of rare-earth substitution. Both Y3+ and Ho3+ substitutions were found to decrease the magnetocaloric response by disrupting the R3+ ordering. Whereas Er3+ substitution was found to increase the magnetocaloric response, likely due to an increase in the R3+ ordering temperature. The large magnetocaloric entropy change of Er3+ substituted DyCrO3 (10.92 J/kg K with a relative cooling power of 237 J/kg at 40 kOe and 5 K) indicates that this material system is well suited for low temperature (<30 K) solid state refrigeration applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI