已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A maximum entropy method to extract urban land by combining MODIS reflectance, MODIS NDVI, and DMSP-OLS data

遥感 土地覆盖 归一化差异植被指数 中分辨率成像光谱仪 专题制图器 环境科学 光谱辐射计 卫星 计算机科学 专题地图 卫星图像 像素 熵(时间箭头) 土地利用 气象学 反射率 气候变化 地理 地图学 地质学 人工智能 工程类 物理 航空航天工程 土木工程 光学 海洋学 量子力学
作者
Jinyao Lin,Xiaoping Liu,Kai Li,Xia Li
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:35 (18): 6708-6727 被引量:46
标识
DOI:10.1080/01431161.2014.960623
摘要

Researchers often encounter difficulties in obtaining timely and detailed information on urban growth. Modern remote-sensing techniques can address such difficulties. With desirable spectral resolution and temporal resolution, Moderate Resolution Imaging Spectroradiometer (MODIS) products have significant advantages in tackling land-use and land-cover change issues at regional and global scales. However, simply based on spectral information, traditional methods of remote-sensing image classification are barely satisfactory. For example, it is quite difficult to distinguish urban and bare lands. Moreover, training samples of all land-cover types are needed, which means that traditional classification methods are inefficient in one-class classification. Even support vector machine, a current state-of-the-art method, still has several drawbacks. To address the aforementioned problems, this study proposes extracting urban land by combining MODIS surface reflectance, MODIS normalized difference vegetation index (NDVI), and Defense Meteorological Satellite Program Operational Linescan System data based on the maximum entropy model (MAXENT). This model has been proved successful in solving one-class problems in many other fields. But the application of MAXENT in remote sensing remains rare. A combination of NDVI and Defense Meteorological Satellite Program Operational Linescan System data can provide more information to facilitate the one-class classification of MODIS images. A multi-temporal case study of China in 2000, 2005, and 2010 shows that this novel method performs effectively. Several validations demonstrate that the urban land extraction results are comparable to classified Landsat TM (Thematic Mapper) images. These results are also more reliable than those of MODIS land-cover type product (MCD12Q1). Thus, this study presents an innovative and practical method to extract urban land at large scale using multiple source data, which can be further applied to other periods and regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叫我魔王大人完成签到,获得积分10
刚刚
酷波er应助愤怒的冰菱采纳,获得10
1秒前
anyilin发布了新的文献求助20
2秒前
zzzzzz完成签到,获得积分10
6秒前
10秒前
11秒前
NexusExplorer应助vee采纳,获得10
18秒前
lilei完成签到 ,获得积分10
23秒前
勤劳怜寒完成签到,获得积分10
28秒前
呜呜完成签到 ,获得积分10
28秒前
31秒前
jiiie发布了新的文献求助10
36秒前
pp‘s完成签到 ,获得积分10
38秒前
haha完成签到,获得积分10
39秒前
丘比特应助图治采纳,获得10
39秒前
yx_cheng应助科研通管家采纳,获得30
40秒前
情怀应助科研通管家采纳,获得10
40秒前
小马甲应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
CipherSage应助薛天抒采纳,获得10
41秒前
动听的笑南完成签到,获得积分10
42秒前
47秒前
haha发布了新的文献求助10
48秒前
48秒前
49秒前
张小仙完成签到,获得积分10
50秒前
天人合一完成签到,获得积分10
51秒前
52秒前
哈哈完成签到 ,获得积分10
53秒前
53秒前
hellomoon发布了新的文献求助10
55秒前
钟文发布了新的文献求助10
55秒前
lvsehx发布了新的文献求助10
58秒前
桐桐应助小爽采纳,获得10
1分钟前
所所应助jah采纳,获得10
1分钟前
1分钟前
彭于晏应助lvsehx采纳,获得10
1分钟前
泥嚎完成签到,获得积分10
1分钟前
ice完成签到 ,获得积分10
1分钟前
南笺完成签到 ,获得积分10
1分钟前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4053472
求助须知:如何正确求助?哪些是违规求助? 3591638
关于积分的说明 11413206
捐赠科研通 3317755
什么是DOI,文献DOI怎么找? 1824864
邀请新用户注册赠送积分活动 896263
科研通“疑难数据库(出版商)”最低求助积分说明 817398