An Incremental Version of L-MVU for the Feature Extraction of MI-EEG

计算机科学 模式识别(心理学) 人工智能 线性判别分析 小波 特征提取 非线性系统 物理 量子力学
作者
Mingai Li,Hongwei Xi,Xiaoqing Zhu
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Limited]
卷期号:2019: 1-19 被引量:3
标识
DOI:10.1155/2019/4317078
摘要

Due to the nonlinear and high-dimensional characteristics of motor imagery electroencephalography (MI-EEG), it can be challenging to get high online accuracy. As a nonlinear dimension reduction method, landmark maximum variance unfolding (L-MVU) can completely retain the nonlinear features of MI-EEG. However, L-MVU still requires considerable computation costs for out-of-sample data. An incremental version of L-MVU (denoted as IL-MVU) is proposed in this paper. The low-dimensional representation of the training data is generated by L-MVU. For each out-of-sample data, its nearest neighbors will be found in the high-dimensional training samples and the corresponding reconstruction weight matrix be calculated to generate its low-dimensional representation as well. IL-MVU is further combined with the dual-tree complex wavelet transform (DTCWT), which develops a hybrid feature extraction method (named as IL-MD). IL-MVU is applied to extract the nonlinear features of the specific subband signals, which are reconstructed by DTCWT and have the obvious event-related synchronization/event-related desynchronization phenomenon. The average energy features of α and β waves are calculated simultaneously. The two types of features are fused and are evaluated by a linear discriminant analysis classifier. Based on the two public datasets with 12 subjects, extensive experiments were conducted. The average recognition accuracies of 10-fold cross-validation are 92.50% on Dataset 3b and 88.13% on Dataset 2b, and they gain at least 1.43% and 3.45% improvement, respectively, compared to existing methods. The experimental results show that IL-MD can extract more accurate features with relatively lower consumption cost, and it also has better feature visualization and self-adaptive characteristics to subjects. The t-test results and Kappa values suggest the proposed feature extraction method reaches statistical significance and has high consistency in classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwy应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
舒适虔完成签到,获得积分10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
852应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
复苏应助dalian采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
spc68应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得20
1秒前
无花果应助科研通管家采纳,获得10
1秒前
Twonej应助科研通管家采纳,获得30
1秒前
SMZ应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
2秒前
2秒前
所所应助科研通管家采纳,获得10
2秒前
EMC应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
spc68应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661318
求助须知:如何正确求助?哪些是违规求助? 4838264
关于积分的说明 15095308
捐赠科研通 4820082
什么是DOI,文献DOI怎么找? 2579723
邀请新用户注册赠送积分活动 1534013
关于科研通互助平台的介绍 1492767