Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges

反渗透 纳滤 水处理 膜技术 膜污染 化学 膜蒸馏 结垢 海水淡化 环境科学 环境工程 生物化学
作者
Xiulin Zhu,David Jassby
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:52 (5): 1177-1186 被引量:118
标识
DOI:10.1021/acs.accounts.8b00558
摘要

ConspectusTo meet the increasing demand for water, potable water providers are turning toward unconventional waters, such as seawater and wastewater. These highly saline and/or heavily contaminated water sources are difficult to treat, demanding the use of advanced technology not typically used to treat conventional water sources such as river water or fresh groundwater. Of these advanced technologies, membrane separation processes are fast becoming the most widely used methods to convert these marginal waters into useful resources. The main factors contributing to the widespread adoption of membrane separation processes for water treatment include their modular nature, small physical footprint, and relative energy efficiency compared to traditional distillation processes. In addition, membranes present a physical barrier to pathogens, which is an attractive feature in terms of disinfection credits. However, traditional membrane materials suffer from several distinct drawbacks, which include membrane fouling (the accumulation of material on the membrane surface that blocks the flow of water), the need for high-pressure membranes (such as reverse osmosis (RO) or nanofiltration (NF)) or membrane/thermal processes (e.g., membrane distillation (MD)) to remove small contaminant compounds (e.g., trace metals, salt, endocrine disrupting compounds), and a pressure-driven membrane’s inability to effectively remove small, uncharged molecules (e.g., N-nitrosodimethylamine (NDMA), phenol, acetone, and boron).Electrically driven physical and chemical phenomena, such as electrophoresis, electrostatic repulsion, dielectrophoresis, and electricity-driven redox reactions, have long been coupled to membrane-based separation processes, in a process known as electrofiltration. However, it is only in recent years that appropriate membrane materials (i.e., electrically conducting membranes (EMs)) have been developed that enable the efficient use of these electro-driven processes. Specifically, the development of EM materials (both polymeric and inorganic) have reduced the energy consumption of electrofiltration by using the membrane as an electrode in an electrochemical circuit. In essence, a membrane-electrode allows for the concentrated delivery of electrical energy directly to the membrane/water interface where the actual separation process takes place. In the past, metal electrodes were placed on either side of the membrane, which resulted in large potentials needed to drive electrochemical/electrokinetic phenomena. The use of a membrane-electrode dramatically reduces the required potentials, which reduces energy consumption and can also eliminate electrocorrosion and the formation of undesirable byproducts.In this Account, we review recent developments in the field of electrofiltration, with a focus on two water treatment applications: desalination and water reuse (wastewater or contaminated groundwater recycling). Specifically, we discuss how EMs can be used to minimize multiple forms of fouling (biofouling, mineral scaling, organic fouling); how electrochemical reactions at the membrane/water interface are used to destroy toxic contaminants, clean a membrane surface, and transform the local pH environment, which enhances the rejection of certain contaminants; how electric fields and electrostatic forces can be used to reorient molecules at the membrane/water interface; and how electrical energy can be transformed into thermal energy to drive separation processes. A special emphasis is placed on explicitly defining the additional energy consumption associated with the electrochemical phenomena, as well as the additional cost associated with fabricating EM materials. In addition, we will discuss current limitations of the electrofiltration process, with particular attention given to the current limitations of membrane materials and the future research needs in the area of membrane materials and module development.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
钟博士完成签到,获得积分10
刚刚
5秒前
不辣的皮特完成签到,获得积分10
5秒前
5秒前
6秒前
王花花完成签到 ,获得积分10
7秒前
小荇完成签到,获得积分10
7秒前
8秒前
8秒前
wangyan驳回了Jonas应助
8秒前
10秒前
sandyhaikeyi发布了新的文献求助10
10秒前
feng发布了新的文献求助10
12秒前
12秒前
yliaoyou完成签到,获得积分10
12秒前
Acadia发布了新的文献求助10
13秒前
14秒前
叁壹捌发布了新的文献求助10
15秒前
16秒前
17秒前
17秒前
科研小白完成签到,获得积分10
17秒前
火山书痴完成签到 ,获得积分10
18秒前
sandyhaikeyi完成签到,获得积分10
22秒前
0908完成签到,获得积分10
22秒前
22秒前
从容的又蓝完成签到,获得积分10
22秒前
科研小白发布了新的文献求助10
23秒前
Harlotte发布了新的文献求助10
23秒前
24秒前
25秒前
BohanHou完成签到,获得积分10
25秒前
zz完成签到,获得积分10
25秒前
华仔应助sandyhaikeyi采纳,获得10
28秒前
pharmstudent发布了新的文献求助10
28秒前
Ybzhang发布了新的文献求助30
31秒前
糟糕的彩虹完成签到,获得积分10
31秒前
自由的凝竹完成签到,获得积分10
32秒前
33秒前
36秒前
高分求助中
Un calendrier babylonien des travaux, des signes et des mois: Séries iqqur îpuš 1036
Quantum Science and Technology Volume 5 Number 4, October 2020 1000
Formgebungs- und Stabilisierungsparameter für das Konstruktionsverfahren der FiDU-Freien Innendruckumformung von Blech 1000
IG Farbenindustrie AG and Imperial Chemical Industries Limited strategies for growth and survival 1925-1953 800
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 600
Prochinois Et Maoïsmes En France (et Dans Les Espaces Francophones) 500
Beyond Transnationalism: Mapping the Spatial Contours of Political Activism in Europe’s Long 1970s 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2520348
求助须知:如何正确求助?哪些是违规求助? 2164056
关于积分的说明 5547578
捐赠科研通 1884129
什么是DOI,文献DOI怎么找? 938033
版权声明 564482
科研通“疑难数据库(出版商)”最低求助积分说明 500553