Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer

放射治疗 放射治疗计划 头颈部癌 医学 头颈部 医学物理学 分割 计算机科学 放射科 人工智能 外科
作者
Michael Kosmin,Joseph R. Ledsam,Bernardino Romera‐Paredes,R. Mendes,Syed Moinuddin,Débora de Hollanda Souza,Lucinda Gunn,Christopher Kelly,Cían Hughes,Alan Karthikesalingam,Christopher M. Nutting,Ricky A. Sharma
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:135: 130-140 被引量:109
标识
DOI:10.1016/j.radonc.2019.03.004
摘要

Advances in technical radiotherapy have resulted in significant sparing of organs at risk (OARs), reducing radiation-related toxicities for patients with cancer of the head and neck (HNC). Accurate delineation of target volumes (TVs) and OARs is critical for maximising tumour control and minimising radiation toxicities. When performed manually, variability in TV and OAR delineation has been shown to have significant dosimetric impacts for patients on treatment. Auto-segmentation (AS) techniques have shown promise in reducing both inter-practitioner variability and the time taken in TV and OAR delineation in HNC. Ultimately, this may reduce treatment planning and clinical waiting times for patients. Adaptation of radiation treatment for biological or anatomical changes during therapy will also require rapid re-planning; indeed, the time taken for manual delineation currently prevents adaptive radiotherapy from being implemented optimally. We are therefore standing on the threshold of a transformation of routine radiotherapy planning via the use of artificial intelligence. In this article, we outline the current state-of-the-art for AS for HNC radiotherapy in order to predict how this will rapidly change with the introduction of artificial intelligence. We specifically focus on delineation accuracy and time saving. We argue that, if such technologies are implemented correctly, AS should result in better standardisation of treatment for patients and significantly reduce the time taken to plan radiotherapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啥东西啥完成签到,获得积分10
刚刚
活泼的初阳关注了科研通微信公众号
1秒前
昏睡的蟠桃应助阿希塔采纳,获得200
2秒前
3秒前
3秒前
3秒前
酷波er应助犹豫的硬币采纳,获得10
3秒前
王夹心饼干完成签到,获得积分10
3秒前
3秒前
雨雨发布了新的文献求助10
4秒前
ZhouYW应助飞羽采纳,获得10
4秒前
隐形曼青应助飞羽采纳,获得10
4秒前
露卡完成签到,获得积分10
4秒前
5秒前
5秒前
羊羊羊发布了新的文献求助20
5秒前
乐观德地完成签到,获得积分10
5秒前
xx完成签到 ,获得积分10
6秒前
能干芙完成签到,获得积分10
6秒前
情怀应助sunshine采纳,获得10
7秒前
科研通AI5应助聪明的戒指采纳,获得10
7秒前
7秒前
快乐小霉发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
专注的糖豆完成签到,获得积分10
8秒前
nnbn发布了新的文献求助10
8秒前
holycale发布了新的文献求助30
8秒前
蛋蛋发布了新的文献求助10
8秒前
9秒前
蕯匿完成签到,获得积分10
9秒前
ahsisalah完成签到,获得积分10
9秒前
9秒前
10秒前
欧耶欧椰完成签到 ,获得积分10
10秒前
卢浩发布了新的文献求助20
10秒前
道为完成签到,获得积分10
10秒前
酷波er应助CC采纳,获得10
11秒前
映泧完成签到,获得积分10
11秒前
12秒前
成就的心情完成签到,获得积分10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792971
求助须知:如何正确求助?哪些是违规求助? 3337641
关于积分的说明 10286083
捐赠科研通 3054212
什么是DOI,文献DOI怎么找? 1675888
邀请新用户注册赠送积分活动 803875
科研通“疑难数据库(出版商)”最低求助积分说明 761578