亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems

忠诚 人工神经网络 计算机科学 非线性系统 算法 功能(生物学) 水准点(测量) 人工智能 反问题 数学 物理 数学分析 电信 大地测量学 量子力学 进化生物学 生物 地理
作者
Xuhui Meng,George Em Karniadakis
出处
期刊:Journal of Computational Physics [Elsevier BV]
卷期号:401: 109020-109020 被引量:406
标识
DOI:10.1016/j.jcp.2019.109020
摘要

We propose a new composite neural network (NN) that can be trained based on multi-fidelity data. It is comprised of three NNs, with the first NN trained using the low-fidelity data and coupled to two high-fidelity NNs, one with activation functions and another one without, in order to discover and exploit nonlinear and linear correlations, respectively, between the low-fidelity and the high-fidelity data. We first demonstrate the accuracy of the new multi-fidelity NN for approximating some standard benchmark functions but also a 20-dimensional function. Subsequently, we extend the recently developed physics-informed neural networks (PINNs) to be trained with multi-fidelity data sets (MPINNs). MPINNs contain four fully-connected neural networks, where the first one approximates the low-fidelity data, while the second and third construct the correlation between the low- and high-fidelity data and produce the multi-fidelity approximation, which is then used in the last NN that encodes the partial differential equations (PDEs). Specifically, in the two high-fidelity NNs a relaxation parameter is introduced, which can be optimized to combine the linear and nonlinear sub-networks. By optimizing this parameter, the present model is capable of learning both the linear and complex nonlinear correlations between the low- and high-fidelity data adaptively. By training the MPINNs, we can:(1) obtain the correlation between the low- and high-fidelity data, (2) infer the quantities of interest based on a few scattered data, and (3) identify the unknown parameters in the PDEs. In particular, we employ the MPINNs to learn the hydraulic conductivity field for unsaturated flows as well as the reactive models for reactive transport. The results demonstrate that MPINNs can achieve relatively high accuracy based on a very small set of high-fidelity data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哦哦哦哦哦拖拉大王完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
yindi1991完成签到 ,获得积分10
2分钟前
123456777完成签到 ,获得积分10
2分钟前
xdlongchem完成签到,获得积分10
3分钟前
3分钟前
Pretrial完成签到 ,获得积分10
3分钟前
失眠的霸完成签到,获得积分10
3分钟前
orixero应助科研通管家采纳,获得10
6分钟前
科研通AI5应助budingman采纳,获得10
7分钟前
jun完成签到,获得积分10
7分钟前
7分钟前
7分钟前
7分钟前
budingman发布了新的文献求助10
7分钟前
Tayzon完成签到 ,获得积分10
8分钟前
8分钟前
8分钟前
田様应助还单身的储采纳,获得10
9分钟前
万邦德完成签到,获得积分10
9分钟前
9分钟前
9分钟前
还单身的储完成签到,获得积分20
9分钟前
9分钟前
10分钟前
云是完成签到 ,获得积分10
10分钟前
诚心的水杯完成签到 ,获得积分10
10分钟前
bc应助123采纳,获得30
10分钟前
Chloe完成签到,获得积分10
10分钟前
Noob_saibot完成签到,获得积分10
10分钟前
ldjldj_2004完成签到 ,获得积分10
13分钟前
苹果发夹完成签到 ,获得积分10
13分钟前
DrCuiTianjin完成签到 ,获得积分10
14分钟前
大意的皓轩完成签到 ,获得积分10
14分钟前
15分钟前
苏雅霏完成签到 ,获得积分10
15分钟前
江流有声发布了新的文献求助10
15分钟前
orixero应助AnBiaccepted采纳,获得10
16分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798503
求助须知:如何正确求助?哪些是违规求助? 3344017
关于积分的说明 10318320
捐赠科研通 3060565
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323