Multimodal deep learning for midpalatal suture assessment in maxillary expansion

作者
Jingwen Cai,Zhenling Wang,Han. Wang,Zhonghan Chen,Qin-Qi Yu,Zhichen Lai,Linyu Xu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 39723-39723
标识
DOI:10.1038/s41598-025-23500-2
摘要

Accurate midpalatal suture maturation assessment is critical for orthodontic treatment planning, yet current manual staging methods exhibit substantial inter-examiner variability (kappa values 0.3-0.8), compromising treatment decision reliability. This study developed and validated DeepMSM, an automated multimodal deep learning framework integrating cone-beam computed tomography with clinical indicators for standardized midpalatal suture staging. We retrospectively analyzed cone-beam computed tomography and lateral cephalometric radiographs from 200 orthodontic patients aged 7-36 years. The DeepMSM framework integrated multimodal images with clinical variables including age, gender, cervical vertebral maturation stage, and mandibular third molar stage using attention-based fusion strategies. DeepMSM achieved 93.75% accuracy and 93.81% F1-score, substantially outperforming single-modality approaches (47.50%-71.25% accuracy) and dual-modality models (73.75-81.25% accuracy). The system demonstrated excellent performance in distinguishing critical stages C and D with F1-scores of 92%-93%, representing the decision point between conventional expansion and surgical intervention. All clinical parameters showed significant correlations with midpalatal suture maturation (p<0.05). DeepMSM, a novel multimodal midpalatal suture maturation assessment system, achieved a high accuracy of 93.75%, demonstrating the potential to reduce diagnostic variability and improve treatment reliability. This automated framework particularly benefits less experienced clinicians in making critical treatment decisions for maxillary expansion therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助真实的煎饼采纳,获得10
刚刚
1秒前
1秒前
完美世界应助aaa采纳,获得10
1秒前
毅梦发布了新的文献求助30
1秒前
YZMING完成签到,获得积分10
1秒前
凌奕添发布了新的文献求助10
2秒前
辉辉完成签到,获得积分10
2秒前
鱼鱼鱼完成签到,获得积分10
3秒前
5秒前
栗子完成签到,获得积分10
5秒前
子车茗应助傻什么白采纳,获得30
5秒前
充电宝应助happiness采纳,获得10
5秒前
丘比特应助腼腆的醉柳采纳,获得10
6秒前
7秒前
析木完成签到,获得积分10
7秒前
8秒前
8秒前
可爱的函函应助TXQ采纳,获得10
8秒前
李悟尔发布了新的文献求助10
8秒前
sca完成签到,获得积分10
8秒前
Hhhhh发布了新的文献求助10
9秒前
Rain完成签到,获得积分10
9秒前
10秒前
桐桐应助玉米采纳,获得10
11秒前
Hello应助Giggle采纳,获得10
11秒前
烂漫又菡发布了新的文献求助10
11秒前
11秒前
胡树发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助sca采纳,获得10
12秒前
12秒前
AD应助科研通管家采纳,获得10
13秒前
顾年发布了新的文献求助10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293