晶体结构预测
计算机科学
启发式
水准点(测量)
接口(物质)
领域(数学)
强化学习
生成语法
人工智能
Crystal(编程语言)
生成模型
机器学习
能量(信号处理)
能量最小化
数据结构
算法
晶体结构
结构复杂性
作者
Zhendong Cao,Shigang Ou,Lei P Wang
出处
期刊:Cornell University - arXiv
日期:2025-12-20
摘要
Crystal structure prediction is a fundamental problem in materials science. We present CrystalFormer-CSP, an efficient framework that unifies data-driven heuristic and physics-driven optimization approaches to predict stable crystal structures for given chemical compositions. The approach combines pretrained generative models for space-group-informed structure generation and a universal machine learning force field for energy minimization. Reinforcement fine-tuning can be employed to further boost the accuracy of the framework. We demonstrate the effectiveness of CrystalFormer-CSP on benchmark problems and showcase its usage via web interface and language model integration.
科研通智能强力驱动
Strongly Powered by AbleSci AI