Cross-modal cell nucleus point clouds non-rigid registration for multiscale brain structure analysis

连接组学 计算机科学 点云 人工智能 神经信息学 神经科学 稳健性(进化) 加权 人工神经网络 离群值 分割 计算机视觉 神经编码 核心 噪音(视频) 模式识别(心理学) 局部场电位 神经影像学 点(几何) 大脑定位 视皮层 生物神经网络 丘脑底核 介观物理学 神经功能成像
作者
Lv, Yanan,Liu, Jiangduo,Chen, Xi,Han, Hua
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:26 (Supplement_1): i22-i22
标识
DOI:10.1093/bib/bbaf631.029
摘要

Abstract Background Multiscale information integration is essential for a comprehensive understanding of brain structure and function [1]. Optical microscopy provides mesoscopic information on brain region distribution, neuronal projections, and functional activity patterns, while electron microscopy offers microscopic details, such as cell morphology and synaptic connectivity. Aligning cell nucleus information from these two modalities is therefore critical for linking global tissue organization with cellular-level mechanisms. However, fundamental differences in imaging principles and data characteristics make cross-modal cell nucleus point clouds registration highly challenging [2]. Variations in point density, inconsistent noise levels, and complex nonlinear deformations often prevent traditional methods from achieving the accuracy and biological plausibility required in neuroscience research. Method We propose a non-rigid registration strategy for cross-modal cell nucleus point clouds. The method adopts a multi-level block correspondence scheme to achieve consistent alignment across local and global scales, while integrating neighborhood constraints and a bidirectional weighting mechanism to mitigate the influence of outliers and data sparsity. Experiment Experimental results demonstrate that this strategy significantly improves registration accuracy and robustness while preserving structural continuity. This work provides technical support for cross-modal neural tissue mapping and demonstrates the potential of multiscale information integration to advance brain connectomics and neurological disease research. References [1] Shapson-Coe A, Januszewski M, Berger D R, et al. ‘A petavoxel fragment of human cerebral cortex reconstructed at nanoscale resolution’ [J]. Science, 2024, 384(6696). [2] Huang X, Mei G, Zhang J. ‘Cross-source point cloud registration: Challenges, progress and prospects’ [J]. Neurocomputing, 2023, 548: 126383.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biye发布了新的文献求助10
1秒前
1秒前
az完成签到 ,获得积分10
2秒前
学术猪八戒完成签到,获得积分10
2秒前
米糊发布了新的文献求助10
3秒前
2333完成签到,获得积分10
3秒前
6秒前
lanlan完成签到 ,获得积分10
6秒前
6秒前
星空完成签到,获得积分10
7秒前
来都来了发布了新的文献求助10
7秒前
智商洼地发布了新的文献求助10
7秒前
FOODHUA发布了新的文献求助10
7秒前
米糊完成签到,获得积分10
8秒前
科研通AI6应助不吃香菜采纳,获得10
8秒前
9秒前
NexusExplorer应助花开的声音采纳,获得10
9秒前
9秒前
标致雨寒发布了新的文献求助10
10秒前
10秒前
鹤九发布了新的文献求助10
10秒前
Aiz应助可可采纳,获得10
11秒前
11秒前
11秒前
11秒前
12秒前
义气的慕卉完成签到,获得积分10
12秒前
ding应助科研狗采纳,获得10
13秒前
脏脏鲤完成签到 ,获得积分10
13秒前
13秒前
结实的惊蛰完成签到,获得积分10
13秒前
13秒前
14秒前
李宏旭发布了新的文献求助20
14秒前
汉堡包应助猪猪hero采纳,获得10
14秒前
西部小田完成签到,获得积分10
14秒前
songif发布了新的文献求助20
15秒前
qiu发布了新的文献求助10
15秒前
123发布了新的文献求助10
16秒前
英姑应助英勇的灯泡采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526777
求助须知:如何正确求助?哪些是违规求助? 4616768
关于积分的说明 14555797
捐赠科研通 4555282
什么是DOI,文献DOI怎么找? 2496282
邀请新用户注册赠送积分活动 1476561
关于科研通互助平台的介绍 1448126