Recent Advances in the Biosensors for the Detection of Lung Cancer Biomarkers: A Review

肺癌 医学 癌症 鉴定(生物学) 肺癌的治疗 肺病 疾病 癌症检测 病理 癌症生物标志物 肿瘤科 生物传感器 正电子发射断层摄影术 癌症研究 内科学 评论文章 计算机断层摄影术
作者
Pooja Rahar,Saravjeet Singh
出处
期刊:Critical Reviews in Analytical Chemistry [Informa]
卷期号:: 1-13
标识
DOI:10.1080/10408347.2025.2606194
摘要

Nearly 10 million deaths from cancer occurred in 2020, making it a major cause of death globally, according to the WHO and other important statistics. Given that lung cancer is one of the most prevalent types of cancer, it accounts for around 25% of all deaths from cancer-related causes. The two forms of lung cancer that are treated and characterized differently are small-cell and non-small-cell lung cancer. To identify malignant cells, several techniques have been used in recent decades, including MRI (magnetic resonance imaging), CT (computed tomography scans), and PET (positron emission tomography). The standard detection threshold of conventional assays is insufficient for early-stage detection. As a result, numerous detection techniques have been used to identify lung cancer early. The stages of lung cancer are indicated by the amounts of these biomarkers. As a result, lung cancer screening and clinical diagnosis can be accomplished by the identification of biomarkers. EGFR, CEA, CYFRA 21-1, ENO1, NSE, CA 19-9, CA 125, and VEGF are among the many biomarkers for lung cancer. To identify lung cancer disease biomarkers, an organized summary of several biosensing platforms is given in this article. In particular, it addresses the most recent advancements in optical and electrochemical biosensors, the analytical capabilities of various biosensors, the challenges, and potential directions for future study in regular clinical analysis. Therefore, this study reviews the latest developments and enhancements (2011-2025) in biosensors for the identification of biomarkers for lung cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助何新何采纳,获得10
2秒前
所所应助苏州河采纳,获得10
2秒前
暮鼓发布了新的文献求助10
2秒前
wulala完成签到,获得积分10
3秒前
行走在科研的小路上完成签到,获得积分10
3秒前
GI完成签到,获得积分10
3秒前
3秒前
可莉完成签到 ,获得积分10
3秒前
DamenS发布了新的文献求助10
3秒前
3秒前
4秒前
YOLO发布了新的文献求助10
5秒前
213435完成签到,获得积分20
5秒前
Walter发布了新的文献求助10
5秒前
青柠发布了新的文献求助10
6秒前
夜雨发布了新的文献求助10
6秒前
ab发布了新的文献求助10
6秒前
7秒前
7秒前
Aloha发布了新的文献求助10
7秒前
王盼发布了新的文献求助10
7秒前
枳酒发布了新的文献求助10
7秒前
科研通AI6应助菠萝采纳,获得10
8秒前
俏皮的海云完成签到,获得积分10
9秒前
妞妞牛传奇完成签到 ,获得积分20
9秒前
ding应助wz采纳,获得10
10秒前
胡小妹发布了新的文献求助10
10秒前
xh发布了新的文献求助10
10秒前
10秒前
朝朝发布了新的文献求助10
10秒前
Jasper应助xxx采纳,获得10
11秒前
11秒前
12秒前
13秒前
苏州河发布了新的文献求助10
13秒前
朱孟研应助zane采纳,获得20
14秒前
AIBL完成签到,获得积分10
14秒前
小爪冰凉应助坚定若雁采纳,获得10
14秒前
XXI发布了新的文献求助10
15秒前
JRZ发布了新的文献求助10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746