材料科学
膜
化学工程
氧化物
电解水
电化学
析氧
电解
离子电导率
离子液体
锚固
氧气
分解水
表面工程
立方氧化锆
电导率
制氢
氢
碱性水电解
纳米技术
聚合物
纳米颗粒
无机化学
电流密度
聚合物电解质膜电解
耐久性
电催化剂
环境压力
催化作用
电极
陶瓷
氢燃料
离子键合
作者
Xinhao Li,Jiangping Song,Tian Tian,Shengqiu Zhao,Rui Chen,Sixiu Zeng,Zhijie Wei,Haolin Tang
标识
DOI:10.1002/aenm.202506172
摘要
ABSTRACT The performance of alkaline water electrolysis for green hydrogen production is critically dependent on membrane, which is often constrained by a trade‐off between ionic conductivity and gas impermeability. Here, this challenge is overcome through a universal defect engineering strategy centered on metal oxide nanoparticles. By creating a high density of oxygen vacancies in zirconia (ZrO 2 ), we transform the nanoparticles into potent Lewis acid sites. This dual functionality engineers the polymer‐filler interface to create continuous, low‐resistance pathways for rapid OH − transport, while simultaneously establishing strong Lewis acid‐base “molecular anchoring” to the polymer matrix and support mesh. This robust interfacial cohesion yields a thin composite membrane (≈190 µm) with an ultralow area resistance (0.08 Ω cm 2 ) and a remarkable bubble point pressure (5.6 bar). Consequently, an AWE cell achieves an relevant current density of 2 A cm −2 at only 1.82 V and demonstrates exceptional durability over 730 h. This vacancy‐mediated interfacial engineering paradigm, proven effective for TiO 2 and CeO 2 as well, offers a powerful and broadly applicable strategy for developing advanced membranes for electrochemical energy systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI