Machine learning models for predicting patient satisfaction after adult spinal deformity surgery

医学 患者满意度 逻辑回归 物理疗法 接收机工作特性 机器学习 脊柱畸形 最小临床重要差异 矢状面 特征选择 沃马克 人工智能 畸形 脊柱侧凸 物理医学与康复 结果(博弈论) 预测建模 多元统计 外科 骨关节炎 非参数统计 学习曲线 回归分析 多元分析 患者报告的结果
作者
Zheng Wang,Qijun Wang,Wei Wang,Hu Xy,Haojie Zhang,Wei Zhao,Xiangyu Li,Weiguo Zhu,Chao Kong,Xiaolong Chen,Shibao Lu
出处
期刊:Journal of neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:: 1-12
标识
DOI:10.3171/2025.8.spine25594
摘要

OBJECTIVE Patient satisfaction serves as a valuable measure for evaluating outcomes from the patient’s perspective. However, the factors critical for predicting satisfaction in patients with adult spinal deformity (ASD) remain elusive. This study aimed to develop and validate predictive models for assessing patient satisfaction 24 months after ASD surgery. METHODS A total of 213 individuals diagnosed with ASD met inclusion criteria; 128 (60%) patients were randomly selected for model development (training set), and the remaining 85 (40%) were used for internal validation (test set) to assess model robustness. The primary outcome was the satisfaction score from Scoliosis Research Society–22r domains, with scores ≥ 4.5 indicating high satisfaction. Three machine learning (ML) algorithms (least absolute shrinkage and selection operator, recursive feature elimination, and Boruta) were used to identify critical variables for patient satisfaction. A logistic regression model was developed and tested based on these variables to predict personalized satisfaction. Feature importance was ranked using the Shapley Additive Explanations (SHAP) method. RESULTS ML algorithms identified 9 key indicators of postoperative satisfaction. The predictive model demonstrated an area under the receiver operating characteristic curve of 0.846 and an accuracy of 0.812 in the test set. SHAP analysis revealed that predictors such as improved postoperative Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) function, absence of frailty, achievement of minimum clinically important difference in imaging, and enhanced WOMAC function increased the relative functional cross-sectional area, higher postoperative subtotal scores, smaller postoperative sagittal vertical axis, successful pelvic compensation, and reduced fatty infiltration significantly influenced postoperative satisfaction. CONCLUSIONS The results of this study suggest that the developed models can provide patients with personalized prognostic information. Surgeons should consider these routinely modifiable indicators in clinical practice to guide postoperative rehabilitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
daladidala完成签到,获得积分10
2秒前
coster完成签到,获得积分10
2秒前
Frank发布了新的文献求助10
2秒前
高兴擎苍发布了新的文献求助10
2秒前
佩奇发布了新的文献求助10
3秒前
3秒前
3秒前
Venus完成签到,获得积分10
3秒前
科研小白发布了新的文献求助10
3秒前
落雁完成签到,获得积分10
4秒前
塔莉娅完成签到,获得积分10
4秒前
小蘑菇应助阿吟采纳,获得10
4秒前
5秒前
荼黎完成签到,获得积分10
5秒前
6秒前
DrNaz给DrNaz的求助进行了留言
6秒前
犹豫大侠发布了新的文献求助10
6秒前
慕昊强完成签到,获得积分10
6秒前
daladidala发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
老实翠绿发布了新的文献求助10
9秒前
ivVvyyy完成签到,获得积分10
9秒前
虞丹萱发布了新的文献求助10
9秒前
biu发布了新的文献求助10
11秒前
11秒前
默默的元冬完成签到,获得积分10
12秒前
12秒前
Return完成签到,获得积分10
13秒前
13秒前
wwj1009完成签到 ,获得积分10
13秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700932
求助须知:如何正确求助?哪些是违规求助? 5141378
关于积分的说明 15232242
捐赠科研通 4856069
什么是DOI,文献DOI怎么找? 2605609
邀请新用户注册赠送积分活动 1556949
关于科研通互助平台的介绍 1515058