Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent

解聚 木质素 化学 反应性(心理学) 有机化学 催化作用 生物高聚物 聚合物 医学 病理 替代医学
作者
Ciaran W. Lahive,Peter J. Deuss,Christopher S. Lancefield,Zhuohua Sun,David B. Cordes,Claire M. Young,Fanny Tran,Alexandra M. Z. Slawin,Johannes G. de Vries,Paul C. J. Kamer,Nicholas J. Westwood,Katalin Barta
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:138 (28): 8900-8911 被引量:227
标识
DOI:10.1021/jacs.6b04144
摘要

The development of fundamentally new approaches for lignin depolymerization is challenged by the complexity of this aromatic biopolymer. While overly simplified model compounds often lack relevance to the chemistry of lignin, the direct use of lignin streams poses significant analytical challenges to methodology development. Ideally, new methods should be tested on model compounds that are complex enough to mirror the structural diversity in lignin but still of sufficiently low molecular weight to enable facile analysis. In this contribution, we present a new class of advanced (β-O-4)-(β-5) dilinkage models that are highly realistic representations of a lignin fragment. Together with selected β-O-4, β-5, and β-β structures, these compounds provide a detailed understanding of the reactivity of various types of lignin linkages in acid catalysis in conjunction with stabilization of reactive intermediates using ethylene glycol. The use of these new models has allowed for identification of novel reaction pathways and intermediates and led to the characterization of new dimeric products in subsequent lignin depolymerization studies. The excellent correlation between model and lignin experiments highlights the relevance of this new class of model compounds for broader use in catalysis studies. Only by understanding the reactivity of the linkages in lignin at this level of detail can fully optimized lignin depolymerization strategies be developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
toda_erica完成签到,获得积分10
1秒前
1秒前
爆米花应助轩仔采纳,获得10
1秒前
第一张完成签到,获得积分10
2秒前
Akim应助宇圆少女科研版采纳,获得10
2秒前
糊涂的服饰完成签到,获得积分10
2秒前
Marayoung发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
大个应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
wyj0815应助科研通管家采纳,获得10
4秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
AAAAA应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
xiaojiu完成签到,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
yuliyixue完成签到,获得积分10
5秒前
Hello应助科研通管家采纳,获得10
5秒前
MX应助科研通管家采纳,获得20
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
秋qiu发布了新的文献求助10
5秒前
霸气凡白发布了新的文献求助10
6秒前
7秒前
高山流水完成签到,获得积分10
7秒前
kenhahahaha发布了新的文献求助10
8秒前
俊秀的半雪完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834697
求助须知:如何正确求助?哪些是违规求助? 3377202
关于积分的说明 10497023
捐赠科研通 3096605
什么是DOI,文献DOI怎么找? 1705084
邀请新用户注册赠送积分活动 820451
科研通“疑难数据库(出版商)”最低求助积分说明 772054