A computational method to reveal psychological constructs from text data.

心理学 计量经济学 统计 认知心理学 计算机科学 社会心理学 数学
作者
Alina Herderich,H. Harald Freudenthaler,David García
出处
期刊:Psychological Methods [American Psychological Association]
被引量:2
标识
DOI:10.1037/met0000700
摘要

When starting to formalize psychological constructs, researchers traditionally rely on two distinct approaches: the quantitative approach, which defines constructs as part of a testable theory based on prior research and domain knowledge often deploying self-report questionnaires, or the qualitative approach, which gathers data mostly in the form of text and bases construct definitions on exploratory analyses. Quantitative research might lead to an incomplete understanding of the construct, while qualitative research is limited due to challenges in the systematic data processing, especially at large scale. We present a new computational method that combines the comprehensiveness of qualitative research and the scalability of quantitative analyses to define psychological constructs from semistructured text data. Based on structured questions, participants are prompted to generate sentences reflecting instances of the construct of interest. We apply computational methods to calculate embeddings as numerical representations of the sentences, which we then run through a clustering algorithm to arrive at groupings of sentences as psychologically relevant classes. The method includes steps for the measurement and correction of bias introduced by the data generation, and the assessment of cluster validity according to human judgment. We demonstrate the applicability of our method on an example from emotion regulation. Based on short descriptions of emotion regulation attempts collected through an open-ended situational judgment test, we use our method to derive classes of emotion regulation strategies. Our approach shows how machine learning and psychology can be combined to provide new perspectives on the conceptualization of psychological processes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
偶然发现的西柚完成签到 ,获得积分10
刚刚
ll完成签到,获得积分20
1秒前
喵喵描白完成签到,获得积分10
1秒前
曾经耳机完成签到 ,获得积分10
3秒前
fy完成签到,获得积分10
3秒前
彬彬嘉完成签到,获得积分10
4秒前
苹苹安安完成签到,获得积分10
4秒前
keyan完成签到,获得积分10
7秒前
ABC完成签到,获得积分10
7秒前
鑫鑫完成签到,获得积分10
8秒前
银色星辰完成签到,获得积分10
9秒前
ven完成签到,获得积分10
9秒前
XU2025完成签到 ,获得积分10
10秒前
张玥完成签到,获得积分10
13秒前
西瓜刀完成签到 ,获得积分10
13秒前
FD完成签到,获得积分10
14秒前
qyys完成签到 ,获得积分10
14秒前
科研老兵完成签到,获得积分10
15秒前
ppttyy完成签到 ,获得积分10
15秒前
开朗的乐蕊完成签到,获得积分10
17秒前
wjj119完成签到,获得积分10
17秒前
脑洞疼应助欣喜灵波采纳,获得10
17秒前
赖雅绿完成签到,获得积分10
24秒前
胡图图完成签到,获得积分0
25秒前
鲤鱼完成签到,获得积分10
27秒前
29秒前
30秒前
霍巧凡发布了新的文献求助10
30秒前
红糖小糍粑应助风清扬采纳,获得10
31秒前
Ammon完成签到,获得积分10
31秒前
毛毛完成签到,获得积分10
32秒前
33秒前
POTATO发布了新的文献求助10
33秒前
ho应助GUO采纳,获得10
34秒前
开心向真完成签到,获得积分10
34秒前
xg发布了新的文献求助10
35秒前
康米完成签到,获得积分10
35秒前
木子大少发布了新的文献求助10
36秒前
向上发布了新的文献求助10
38秒前
唯梦完成签到 ,获得积分10
39秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5212724
求助须知:如何正确求助?哪些是违规求助? 4388755
关于积分的说明 13664611
捐赠科研通 4249384
什么是DOI,文献DOI怎么找? 2331550
邀请新用户注册赠送积分活动 1329282
关于科研通互助平台的介绍 1282695